Carefully read and understand all precautions before installing or servicing any metering pump.
ROYTRONIC EXCEL™ Series AD

Model Code Configuration

Control Code

AD2 - Dual Manual Control – Digital:
Stroke frequency and length manually adjustable with digital LCD display, low level indication (remote input). Display configurable to indicate calculated pump flow.

AD8 - Pulse/Analog Input w/ Dual Manual Control – Digital:
Pulse or 4-20 mA signal input controls frequency, digital LCD display, manual stroke length control, frequency manually adjustable when in local control, pulse multiply/divide functions, 24 V output for remote device. Includes dual low level float switch input. Display configurable to indicate calculated pump flow.

AD9 - Pulse/Analog Input w/Dual Manual Control & Enhanced Controls – Digital:
Advanced Features - Pulse or 4/20 mA signal input controls frequency, Digital graphical display, manual stroke length control, Frequency manually adjustable when in local control, Pulse multiply/divide functions, 24 V output for remote device, dual low level float switch input, Remote on/off signal input. Outputs include: 4-20 mA, pulse, & Alarm. Remote internal/external mode input.

Output / Size Code
See Most Recent Price List for Flow and Pressure Ratings

Voltage Code
1 – 110-120V US Plug
2 – 220-240V US Plug
3 – 220-240V DIN Plug
5 – 220-240V UK Plug
6 – 220-240V Aust/NZ Plug
7 – 220-240V Swiss Plug
8 – 110-120V No Plug

Liquid End Code
6 – High Viscosity Head
7 – Molded Head, Single Ball Check Valves
8 – Molded Head, Double Ball Check Valves
9 – Machined Head, Double Ball Check Valves

Liquifram™ Size Code
1 – 0.2 in²
2 – 0.4 in²
3 – 0.8 in²
4 – 1.6 in²

Material Code
See Most Recent Price List for Material Options

Head/Valve Code
S – FastPrime™ Head + 4FV
N – FastPrime™ Head
H – AutoPrime™ Head + 4FV
A – AutoPrime™ Head
V – High Viscosity Head
P – High Viscosity w/Ported Head

Connection Code
I – Inch Tubing
M – Metric Tubing
P – 1/2” NPT - 1/2” BSP Pipe (SS 1/4” NPT)
U – Black, UV Resistant Tubing

*Note: Not all configurations are available. Please see your local distributor or price list for available options.
Contents

1.0 Precautions .. 4
2.0 Introduction .. 6
 2.1 Specifications .. 6
 2.2 Unpacking Check List .. 7
3.0 Installation .. 8
 3.1 Pump Location and Installation 8
 3.2 Pump Mounting ... 8
 3.2.1 Flooded Suction ... 8
 3.2.2 Suction Lift - Wall Bracket Mount 9
 3.2.3 Suction Lift - Tank Mount .. 9
 3.2.4 Suction Lift - Shelf Mount 9
 3.3 Tubing Connections ... 10
 3.4 Four-Function Valves (4-FV) ... 11
 3.5 Four-Function Valve Installation 12
 3.6 FastPrime™ .. 12
 3.7 AutoPrime™ .. 13
 3.8 Foot Valve/Suction Tubing Installation 14
 3.9 Injection Check Valve and Discharge Tubing Installation 15
4.0 Operation ... 16
 4.1 Output Adjustment Controls ... 16
 4.2 Start-up and Adjustment .. 18
 4.2.1 Start-Up/Priming for FastPrime™ Heads (LE-XXXNX) 18
 4.2.2 Start-Up/Priming for Pump Supplied with 4-FV (LE-XXXSX or LE-XXXHX) 18
 4.2.3 Start-Up/Priming for AutoPrime™ Heads (LE-XXXAX or LE-XXXHX) 19
 4.3 Output Adjustment ... 19
 4.3.1 Total Pump Output ... 19
 4.3.2 Calibrating the Displayed Flow (AD2, AD8) 20
 4.4 Methods of Externally Triggering or Pacing AD8 and AD9 Pumps 21
 4.4.1 Control Modes ... 22
 4.4.1.1 Local/Internal Mode ... 22
 4.4.1.2 Changing Displayed Flow Units (AD2, AD8) 22
 4.4.1.3 Remote Mode (for AD8) 22
 4.4.1.3.1 Divide Mode (for AD8) 22
 4.4.1.3.2 Multiply Mode (for AD8) 22
 4.4.1.3.3 Analog Mode (for AD8) 22
 5.0 Spare Parts Replacement and Routine Maintenance 23
 5.1 Depressurizing the Discharge Line (for Pumps Equipped with a 4-FV Only) ... 23
 5.2 Depressurizing The Discharge Line (for Single Ball FastPrime™ Heads Only) ... 23
 5.3 Liquifram™ (Diaphragm) Replacement 24
 5.4 Cartridge Valve and O-Ring Replacement 25
 5.5 Injection Check Valve Parts Replacement 26
 5.6 FastPrime™ Valve O-Ring Replacement 27
 5.7 Drive Parts List .. 29
 5.8 EPU Wiring Diagram .. 30
 5.9 Liquid End Parts ... 31
6.0 Wiring Diagrams .. 35
7.0 Troubleshooting .. 38
1.0 PRECAUTIONS

The following precautions should be taken when working with LMI metering pumps. Please read this section carefully prior to installation.

Protective Clothing

ALWAYS wear protective clothing, face shield, safety glasses and gloves when working on or near your metering pump. Additional precautions should be taken depending on the solution being pumped. Refer to MSDS precautions from your solution supplier.

Water Pre-Prime

All LMI pumps are pre-primed with water when shipped from the factory. If your solution is not compatible with water, disassemble the Pump Head Assembly. Thoroughly dry the pump head, valves, o-rings, balls and Liquifram™ (diaphragm). Reassemble head assembly tightening screws in a crisscross pattern. Refill the pump head with the solution to be pumped before priming the pump. (This will aid in priming.)

Liquid Compatibility

CAUTION: The evaluation performed by UL was tested with water only. LMI pumps are tested to NSF 50 for use on muriatic acid (40%) and sodium hypochlorite (12.5%). The pumps are certified to NSF 61 with: sodium hypochlorite (12.5%), sulfuric acid (98.5%), sodium hydroxide (50%), and hydrochloric acid (30%). Determine if the materials of construction included in the liquid handling portion of your pump are adequate for the solution (chemical) to be pumped. Always refer to the solution supplier and the LMI Chemical Resistance Chart for compatibility of your specific LMI metering pump. Contact your local LMI distributor for further information.

Tubing Connections

Inlet and outlet tubing or pipe sizes must not be reduced. Outlet tubing size must not be increased. Make certain that all tubing is SECURELY ATTACHED to fittings prior to start-up (see Section 3.3, Tubing Connections). ALWAYS use LMI supplied tubing with your pump, as the tubing is specifically designed for use with the pump fittings. It is recommended that all tubing be shielded and secure to prevent possible injury in case of rupture or accidental damage. If tubing is exposed to sunlight, black UV resistant tubing should be installed. Check tubing frequently for cracks and replace as necessary.

Vinyl Tubing

Your carton may contain a roll of clear vinyl tubing; this is only for connection to the return line of the FastPrime™ Head and must not be used as discharge tubing.

Fittings and Machine Threads

All fittings should be hand-tightened. An additional 1/8 - 1/4 turn after the fitting is snug may be necessary to provide a leak-proof seal. Excessive overtightening or use of a pipe wrench can cause damage to the fittings, seals, or pump head.

Most LMI pumps have straight screw machine threads on the head and fittings and are sealed by the O-rings. DO NOT use Teflon® tape or pipe dope to seal threads. Teflon® Tape may only be used on the 1/2" NPT thread side of the Injection Check Valve, the stainless steel liquid end connections, except for the head’s discharge port, or if piping is directly connected to the pipe threads of the suction or discharge fittings.

Plumbing

Always adhere to your local plumbing codes and requirements. Be sure installation does not constitute a cross connection. Check local plumbing codes for guidelines. LMI is not responsible for improper installations.
Back Pressure/Anti-Syphon Valve

If you are pumping downhill or into low or no system pressure, a back pressure/anti-syphon device such as LMI’s Four-Function Valve should be installed to prevent overpumping or syphoning. Contact your LMI distributor for further information.

Electrical Connections

WARNING: To reduce the risk of electrical shock, the metering pump must be plugged into a properly grounded grounding-type receptacle with ratings conforming to the data on the pump control panel. The pump must be connected to a good ground. Do not use adapters! All wiring must conform to local electrical codes. If the supply cord is damaged, it must be replaced by the manufacturer, stocking distributor, or authorized repair center in order to avoid a hazard.

Fuse (all models) and Battery (AD9 only)

Caution, Battery may explode if mistreated. Do not recharge, disassemble or dispose of in fire. The battery and fuse are internal, factory serviceable parts, and must be replaced by the factory or a qualified distributor with parts of the same type and rating.

Flooding

WARNING: Install this pump in a location where flooding cannot occur.

Ground Fault Circuit Interrupter

WARNING: To reduce the risk of electric shock, install only on a circuit protected by a Ground Fault Circuit Interrupter (GFCI).

Line Depressurization

To reduce the risk of chemical splash during disassembly or maintenance, all installations should be equipped with line depressurization capability. Using LMI’s Four-Function Valve (4-FV) is one way to include this feature.

Over Pressure Protection

To ensure safe operation of the pump it is recommended that some type of safety/pressure-relief valve be installed to protect the piping and other system components from failing due to excessive pressure.

Chemical Concentration

There is a potential for elevated chemical concentration during periods of no flow, for example, during backwash in the system. Steps, such as turning the pump off, should be taken during operation or installation to prevent this.

See your distributor about other external control options to help mitigate this risk.

Retightening Components

Plastic materials will typically exhibit creep characteristics when under pressure over a period of time and to insure a proper fit it may be necessary to retighten the head bolts periodically. To insure proper operation, we recommend tightening the bolts to 25 inch-pounds after the first week of operation and on a monthly basis thereafter.

Flow Display

The default flow value as shown on the pump display is accurate at maximum pressure and 100% stroke length. If your operating conditions differ from this, then calibration is necessary in order to display an accurate measure of the flow.
2.0 Introduction

LMI is the world’s most versatile manufacturer of economical and efficient metering pumps. This manual addresses the installation, maintenance and troubleshooting procedures for manually and externally controlled pumps. LMI has a worldwide network of stocking representatives and authorized repair centers to give you prompt and efficient service.

Please review this manual carefully. Pay particular attention to warnings and precautions. Always follow good safety procedures, including the use of proper clothing, eye and face protection.

2.1 Specifications

<table>
<thead>
<tr>
<th></th>
<th>AD2XY (where X is any number; where Y is 1, or 8)</th>
<th>AD2XY (where X is any number; where Y is 2,3,4,5,6,7, or 9)</th>
<th>AD8XY, or AD9XY (where X is any number; where Y is any number)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Temperature</td>
<td>14 to 113°F –10 to 45°C</td>
<td>14 to 113°F –10 to 45°C</td>
<td>14 to 113°F –10 to 45°C</td>
</tr>
<tr>
<td>Voltage</td>
<td>110 to 120 V</td>
<td>220 to 240 V</td>
<td>95 to 240 V</td>
</tr>
<tr>
<td>Frequency</td>
<td>50 to 60 Hz</td>
<td>50 to 60 Hz</td>
<td>50 to 60 Hz</td>
</tr>
<tr>
<td>Max. Current</td>
<td>2.0 A</td>
<td>1.0 A</td>
<td>1.4 A</td>
</tr>
<tr>
<td>Wattage</td>
<td>25 W</td>
<td>22 W</td>
<td>20 W</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>AD2</th>
<th>AD8</th>
<th>AD9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery</td>
<td>N/A</td>
<td>N/A</td>
<td>Panasonic BR1225 or Renata CR1225 or Energizer/Eveready CR1220</td>
</tr>
<tr>
<td>Fuse</td>
<td>Bel Fuse 5HT1.25-R Time-lag, 5mm x 20mm</td>
<td>Bel Fuse 5HT 2-R Time-lag, 5mm x 20mm</td>
<td>Bel Fuse 5H 2-R Time-lag, 5mm x 20mm</td>
</tr>
</tbody>
</table>

*The battery and fuse are internal, factory serviceable parts, and must be replaced by the factory or a qualified distributor with parts of the same type and rating.
2.2 Unpacking Check List

Your carton will contain many or all of the following items. Please notify the carrier immediately if there are any signs of damage to the pump or its parts.

- Metering Pump
- Foot Valve
- Tubing (0 to 3 Rolls)
- Ceramic Foot Valve
- Injection Check Valve
- Four-Function Valve (Optional)
- External Control Cable (0, 1, or 2 Cables)
- Tube Connection Hardware
3.0 Installation

3.1 Pump Location and Installation

Locate pump in an area convenient to solution tank and electrical supply. The pump should be accessible for routine maintenance, and should not be operated in ambient temperatures above 113°F (45°C). If the pump will be exposed to direct sunlight, LMI black, UV resistant tubing should be installed.

This pump is cord connected and not intended for permanent mounting to a building. However, temporary mounting to stabilize the pump during operation may be necessary as long as tools are not required for the installation or removal of the pump.

3.2 Pump Mounting

The pump can be mounted in one of two ways:

A. **FLOODED SUCTION** (ideal installation); or

B. **SUCTION LIFT** - when suction lift is less than 5 feet (1.5 m) for solutions having a specific gravity of water or viscosity of less than 100 cSt (centistokes). For denser or more viscous solutions, consult distributor.

Note that suction conditions can affect the performance of the pump. This effect is more pronounced with lower pressure pumps. Consult your distributor for additional information.

Your LMI metering pump must be mounted so that the suction and discharge valves are vertical. **NEVER position pump head and fittings horizontally.**

3.2.1 Flooded Suction

For flooded suction the pump is mounted at the base of the storage tank. This installation is the most trouble-free, and is recommended for very low outputs, solutions that gasify, and high-viscosity solutions. Since the suction tubing is filled with solution, priming is accomplished quickly and the chance of losing prime is reduced. A foot valve is not necessary in a flooded suction installation.

When pumping downhill or into low or no pressure system, a back pressure/anti-syphon device should be installed to prevent overpumping or syphoning.

Although popular for all solutions, LMI recommends flooded suction installations for all high-viscosity fluid applications.
3.2.2 Suction Lift - Wall Bracket Mount

The pump may be mounted using an LMI Wall Mount Bracket Assembly (part no. 34643) directly above the solution tank. A pump mounted in this manner allows for easy changing of solution tanks or drums.

3.2.3 Suction Lift - Tank Mount

The pump may be mounted on a LMI 10-gallon tank (part no. 27421), 35-gallon tank (part no. 27400), and 50-gallon tank (part no. 26350).

3.2.4 Suction Lift - Shelf Mount

The pump may be mounted on a shelf (customer supplied) maintaining a suction lift of less than 5 ft (1.5 m).
3.3 Tubing Connections

1. Insert tubing through Coupling Nut—Tubing should enter the smaller end of the Coupling Nut first, orienting the larger opening of the Coupling Nut toward the tubing end.

2a. For 1/4” OD tubing: Position the Female Ferrule so that 1/4” to 3/8” (5-10 mm) of tubing protrudes from the Female Ferrule. Orient the raised collar of the Ferrule toward the Coupling Nut (reference FIGURE 1).

2b. For 3/8” or 1/2” OD tubing: Position a Female Ferrule about one inch (25 mm) from end of tubing. Orient the raised collar of the Female Ferrule toward the Coupling Nut. Then, insert the Male Ferrule onto the end of the tube, pushing the tube into the bottom of the groove in the Male Ferrule. Then slide the Female Ferrule down the tubing and with your fingers, press tightly into the Male Ferrule (reference FIGURE 2).

3. Firmly hand tighten the Coupling Nut onto the fitting. Note: Tightening with pliers may cause the Ferrules to break.

A. USE ONLY LMI TUBING—ALWAYS use LMI supplied tubing with your pump, as the tubing is specifically designed for use with the pump fittings.

B. DO NOT USE CLEAR VINYL TUBING ON THE DISCHARGE SIDE OF THE PUMP. The pressure created by the pump can rupture vinyl tubing.

C. Before installation, all tubing must be cut with a clean square end.

D. Valve and head connections from the factory are capped or plugged to retain pre-prime water. Remove and discard these caps or plugs before connecting tubing.

DO NOT USE PLIERS OR PIPE WRENCH ON COUPLING NUTS OR FITTINGS.

DO NOT REUSE FERRULES—USE ONLY NEW FERRULES.

FIGURE 1

FIGURE 2

Replacement Ferrules, and Coupling Nuts are available as the following kit numbers:

- 1/4” Tube – 77382
- 3/8” Tube – 77383
- 1/2” Tube – 77384
- 3 x 6 mm Tube – 77378
- 6 x 8 mm Tube – 77379
- 9 x 12 mm Tube – 77380

One kit is needed for each end of the tube.
3.4 Four-Function Valves (4-FV)

Your pump may be equipped with a 4-FV, or standard discharge valve. If your pump is not equipped with a four-function valve and you feel it is needed in your application, it can be purchased as an accessory. Contact your local LMI stocking distributor. The features of a 4-FV are listed below.

1. **Pressure Relief**: If the discharge line is over pressurized, the valve opens sending solution back to the supply tank.
2. **Line Depressurization**: Opening the relief knob provides line drain back to the supply tank.
3. **Anti-Syphon**: Prevents syphoning when pumping solution downhill or into a vacuum.
4. **Back Pressure**: Supplies approximately 20 psi back pressure to prevent overpumping when little or no system back pressure is present.

Typical Installations Requiring the Anti-Syphon Feature of a Four-Function Valve

- 4-FV prevents syphoning when pumping downhill into low or no pressure.
- 4-FV prevents syphoning when pumping into a vacuum such as the suction side of a recirculating pump.
3.5 **Four-Function Valve Installation**

To install a 4-FV, the 4-FV Fitting and Coupling Nut should be assembled with the appropriate cartridges into the discharge port of the pump. Use a 13/16” or 20 mm socket to tighten fitting. Tightening to 50 inch-pounds is recommended. Do not over tighten.

To assemble the Four-Function Valve Body, insert the large opening on the Four-Function Valve Body into the 4-FV Coupling Nut and hand tighten. You can position the valve to have the Bleed Nut pressure relief port in any convenient location by tightening the 4-FV Coupling Nut with the Bleed Nut positioned 90º CCW from desired location, then holding the 4-FV Coupling Nut stationery while turning the 4-FV Valve Body the final 90º to desired position. Next, insert the ¼” tubing through the Bleed Nut. Ensure that about ¼” (6 mm) of tubing is protruding through the tip of the Bleed Nut. Firmly hand tighten the Bleed Nut in the hole on the side of the 4-FV. This tubing should be routed back to the supply tank. To ensure proper function of the priming function, the end of this tubing should not be submerged in the solution.

![Four-Function Valve Tubing Connection](image)

This return line tubing must be secured to ensure pumped solution will safely return to supply tank.

3.6 **FastPrime™**

The FastPrime™ Head is equipped with a valve that allows for opening the head to atmospheric pressure. When installing a pump equipped with a FastPrime™ Head connect the 3/8” outer diameter clear vinyl tubing provided with the pump to the barbed nozzle. Route the vinyl return line back to the solution tank. This tubing must not be submerged in the solution.

![FastPrime™ Valve](image)

![FastPrime™ Head](image)
3.7 **AutoPrime™**

Pumps installed with the AutoPrime™ Liquid End are equipped with a valve that allows for constant removal of vapors and gasses inherent with effervescent chemicals such as Sodium Hypochlorite and Hydrogen Peroxide. The valve keeps the pump primed automatically. When installing a pump equipped with an AutoPrime™ Liquid End, connect the 1/2” OD Polyethylene tubing to the top vertical fitting, and route this line back to the supply tank. To ensure priming, this tubing should not be submerged in the solution. The horizontal fitting is the discharge, and the bottom vertical fitting is the suction.
3.8 Foot Valve/Suction Tubing Installation

The Foot Valve acts as a check valve to keep the pump primed in suction lift applications. The foot valve is designed to be submersed in the solution tank or drum and must sit in a vertical position at the bottom. Position approximately 2 inches (50 mm) off the bottom if the tank or drum contains sediment.

The ceramic weight, when installed, helps position the foot valve in a vertical position.

1. Attach the foot valve to one end of the suction tubing (see Tubing Connections, Section 3.3).

2. Slide the ceramic weight over the tubing end until it contacts the top of the foot valve coupling nut.

3. Place foot valve and tubing into the solution tank. Check that the foot valve is vertical and approximately 2 inches (50 mm) from the bottom of the tank or drum (see illustration). Connect the other end of the tubing to the suction side of the pump head (bottom side) (see Tubing Connections, Section 3.3).

Pump models equipped with high-viscosity liquid ends are not equipped with foot valves. Flooded suction is recommended. A 1/2" NPT connector is included for flooded suction installations.

Foot Valve
Tilted Sideways WILL NOT PRIME
INCORRECT

Foot Valve Must Remain Vertical
CORRECT

Return Lines Must Not Be Submerged

Use Ceramic Weight

2.0 in. (50 mm) for Sediment Accumulation
3.9 Injection Check Valve and Discharge Tubing Installation

The Injection Check Valve prevents backflow from a treated line. Install the injection check valve at the location where chemical is being injected into the system. Any size female NPT fitting or pipe tee with a reducing bushing to 1/2" female NPT will accept the injection check valve. PTFE tape should only be used on threads that are connected with pipes.

When installing the Injection Check Valve, be sure to position it so that the valve enters the bottom of your pipe in a vertical position. Variations left and right within 80° are acceptable (see illustration).

After cutting an appropriate length of tubing, connect tubing to the injection check valve then back to the discharge side of the pump head. Make sure it does not crimp or come into contact with hot or sharp surfaces (see Tubing Connections, Section 3.3).
4.0 Operation

4.1 Output Adjustment Controls

1. **Power Button**: This button allows convenient starting and stopping of the pump.

2. **Mode Selection Button**: For pumps with external control capability (AD8, AD9) this button switches pump operation between internal and external modes. When operating in internal mode the Pulse Indicator Light will flash green while pumping. When operating in external mode the Pulse Indicator Light will flash yellow while pumping.

3. **Down Button**: This button reduces the stroke speed of the pump. It will reduce the stroke speed by 1 each time it is pressed. If this button is held down, it will rapidly reduce the stroke speed. When a speed of 1 stroke per minute (SPM) is reached the speed can be further reduced by pressing this button again to enter stroke per hour settings.

4. **Up Button**: This button increases the stroke speed of the pump. It will increase the stroke speed by 1 each time it is pressed. If this button is held down, it will rapidly increase the stroke speed. When a speed of 59 strokes per hour (SPH) is reached the speed can be further increased by pressing this button again to enter stroke per minute settings.

5. **LCD Display**: This display will show the stroke speed of the pump. Pumps with theoretical (AD2, AD8, AD9) or actual (AD9 when combined with a flow meter) flow will display the flow here.

6. **Stroke Adjustment Knob**: This knob provides adjustment of the stroke length. Turning this knob clockwise increases the stroke length, which results in a higher amount of chemical displaced per stroke. It is recommended that the stroke range stay between 20% and 100%.

7. **Pulse Indicator Light**: This light will flash green when pumping in internal mode and will flash yellow when pumping in external mode. The light is on between strokes and off during the actual stroke.

8. **Low-Level Indicator Light**: For units with Single-Level Float Sensors this light will turn red when the Low-Level Sensor registers empty. This will turn the pump off. For units compatible with Dual-Level Sensors (AD8, AD9) the light will turn yellow when a low level is registered, and red when an empty level is registered. The pump will turn off when it registers an empty level.

9. **Output, Alarm, & Remote Mode Connector (6-Pin)**: This connector is used for the special functions associated with the AD9 controls. For the AD9 this connector is associated with the 4-20ma out, Alarm Out, and Internal/External remote modes.

 1. **Alarm Out (Red/White)** – Programmed as either an Alarm Output or Internal/External mode indicator. As an Alarm Output, pins 1 and 2 will give a closure (solid state) triggered by: empty tank indication, input pulse error, exceed batch error, or flow switch activation. For remote mode indication it is open for internal mode and closed for external.

 2. **Alarm Return (Red)** – Return side for the above pin 1 Alarm Out.

 3. **Remote Internal/External Mode (AD9) (Green)** – This pin is programmed as Internal/External remote mode control for an AD9. If programmed as the Internal/External control, a closure will put the AD9 into external mode.
4. Pulse Out (AD9) (Red/Yellow) – On the AD9 this pin gives a 100ms pulse output for each pump stroke.

5. 4-20mA Out (AD9) (Red/Black) – On the AD9 this pin is the positive 4-20mA output. This output will show you 4mA when the pump is idle, 20mA at max stroke speed.

6. Ground/Return Connection (Red/Blue) – Common Ground

10. External Control Connector (5-Pin): This connector is for the connection of various options and accessories that can be used to externally control the pump. The pin functions (and the wire color for the standard LMI external control cable) are as follows:
 1. Remote On/Off Signal (Brown)
 2. Ground/Return Connection (White)
 3. External Pulse Signal (Blue)
 4. 24V 75 mA* Power Supply (Black)
 5. 4-20mA Input Signal (Green/Yellow)

11. Low-Level Connector (3-Pin): This connector is for the connection of a Low-Level Sensor (49246) or a Dual-Level Sensor (49249). The Tank Empty input connections are always active for all models in all functional modes. The Tank Low input connections are always active for models equipped with dual level functionality (AD8, AD9). If the fluid level drops below the top float on a Dual-Level Sensor, the Low-Level Indicator Light will turn yellow. If the fluid level drops below the float on a Low-Level Sensor, or the bottom float on a Dual-Level Sensor, the Low-Level Indicator Light will turn red, and the pump will stop. The pump is designed to recognize an open circuit as full and a closed circuit as low or empty. There is a five second delay between triggering the sensor, and the pump’s reaction. This is intended to avoid triggering during refilling your supply tank. The pin functions are as follows:
 1. Tank Empty Signal
 3. Tank Low Signal
 4. Ground/Return Connection

12. Flow Monitor/Meter Connector (4-Pin): This connector will be used with a Milton Roy flow meter or the Milton Roy Digipulse flow monitor (FM-ROY-9). The pin functions are as follows:
 1. Flow Meter In – A closure between this pin and ground registers a pulse for the flow meter/monitor.
 2. 24 Volt 75 mA* Supply – Supply voltage for a Milton Roy flow meter.
 3. Ground/Return Connection – Common ground
 4. Flow Meter Sense – The condition of this pin will set the pump into the Digipulse or Flow Meter mode. This will automatically occur with the Milton Roy device is connected. A connection to ground indicates the use of a flow meter, while an open circuit indicates a flow monitor.

*The total current output of the 5-pin and 4-pin connectors should not exceed 75 mA.
4.2 Start-up and Adjustment

- The pump is normally self-priming if suction lift is 5 ft (1.5m) or less and the steps below are followed.
- Pumps are shipped from the factory with water in the pump head to aid in priming.

4.2.1 Start-Up/Primming for FastPrime™ Heads (LE-XXXNX)

Read this entire section completely before proceeding.

When all precautionary steps have been taken, the pump is mounted, and the tubing is securely attached, you may now start priming the pump.

1. Plug in or switch the pump on.
2. While the pump is running, set the Speed Adjustment Knob and the Stroke Adjustment Knob at 100%.
3. Turn The FastPrime™ knob 1 to 2 turns counter-clockwise.
4. The suction tubing should begin to fill with solution from the tank.
5. A small amount of solution will begin to discharge out the return line of the FastPrime™ valve. Once this happens, turn the knob clockwise until hand tight and SHUT THE PUMP OFF.
6. The pump is now primed.
7. Proceed to output adjustment, Section 4.3.

4.2.2 Start-Up/Primming for Pump Supplied with 4-FV (LE-XXXSX or LE-XXXHX)

Read this entire section completely before proceeding.

When all precautionary steps have been taken, the pump is mounted, and the tubing is securely attached, you may now start priming the pump.

1. Plug in or switch the pump on.
2. While the pump is running, set the Speed Adjustment Knob and the Stroke Adjustment Knob at 100%.
3. Open the relief side (black knob) of the 4-FV by turning to the stop (about 1/8 turn).
4. The suction tubing should begin to fill with solution from the tank.
5. A small amount of solution will begin to discharge out the return line of the 4-FV valve. Once this happens, return the knob to the 12:00 position and SHUT THE PUMP OFF.
6. The pump is now primed.
7. Proceed to output adjustment, Section 4.3.
4.2.3 Start-Up/Priming for AutoPrime™ Heads (LE-XXXAX or LE-XXXHX)

Read this entire section completely before proceeding.

When all precautionary steps have been taken, the pump is mounted, and the tubing is securely attached, you may prime the pump.

1. Plug in or switch on the pump.
2. While the pump is running, set the speed knob and the stroke knob at 100%.
3. The suction tubing should begin to fill with solution from the tank as the AutoPrime™ valve purges air from the pump head.
4. Once the solution begins to exit the pump head through both the discharge valve and the AutoPrime™ valve, SHUT THE PUMP OFF.
5. The pump is now primed.
6. Proceed to output adjustment, Section 4.3.

4.3 Output Adjustment

Once the pump has been primed, an appropriate output adjustment MUST be made. Pump output should be calculated and adjustments made accordingly.

4.3.1 Total Pump Output

Calculate the approximate output of the pump as follows:

\[\text{PUMP OUTPUT} = \text{MAX PUMP OUTPUT} \times \% \text{SPEED} \times \% \text{STROKE} \]

Example: AD251-938SI

Use Max Output (from dataplate on side of pump) = 1 GPH (1 gallon per hour).

If the pump is set at 60 strokes per minute (out of a possible 120 SPM) and 70% stroke length, the approximate pump output is:

\[1.0 \times \frac{60}{120} \times 0.70 = 0.35 \text{ GPH} \]

Multiply by 24 (hours in one day) to calculate in gallons per day.

It is important to note that this is only an approximate output and it does not account for tolerance variations in pump components or flow variations due to pressure sensitivity, or viscosity effects. Variations due to these effects can be significant, necessitating calibration for your pump.
4.3.2 Calibrating the Displayed Flow (AD2, AD8)

The Roytronic Excel Pumps are equipped to display a theoretical flow rate based upon the pump’s stroke speed and stroke length. These calculations are based upon factory test conditions which may be significantly different from your application. It is necessary for the user to perform the following calibration procedure when the pump is connected to your system, and using the actual chemical. This one-point calibration procedure will greatly improve the accuracy of the pump’s calculated flow. The closer the pump’s stroke length is to the typical use stroke length, the more accurate the result. We recommend using the approximate settings determined in section 4.3.1 as a starting point for calibration.

1. Prepare a flow measuring device such as a graduated cylinder or a scale sensitive to a gram.
2. Ensure the pump is primed following the procedures in 4.2.
3. Put the pump into Internal Mode and use the Power Button to turn the pump off.
4. Hold the Up Button and Down Button in at the same time for 8 seconds until ‘CAL’ is displayed on the LCD Display, then release the buttons. Note ‘FLO’ will be displayed first. Continue to press the buttons until ‘CAL’ is displayed.
5. Push the Power Button and release until a “0” is displayed.
6. Note the reading on the calibration device. If using a graduated cylinder note the starting liquid level. If using a scale note the displayed weight, or reset the scale’s display to zero.
7. Push the Power Button and release to start the pump. Notice that the display will count the total number of strokes. (The screen will show SPH).
8. Allow the pump to run; the accuracy will improve with more strokes. Use the Power Button to stop the pump. The number of strokes will be displayed up to 999 strokes. If you will be pacing the pump externally, note the number of strokes.
9. Press and release the Power Button again. This will display the pump’s estimated volume pumped in mL. (The screen will show ml/h).
10. Use the Up and Down Buttons to match the displayed volume to the measured volume. If using a graduated cylinder, the presence of the tubing will cause the measurement to be slightly higher than actual. The measurement should be adjusted using the formulas shown below. If using a scale, the number of grams can be divided by the specific gravity of your chemical to determine the number of mL pumped. If the pump will be controlled externally, the output volume per stroke can be determined by dividing the measured output by the number of strokes.
11. Once the displayed value has been adjusted, hold and release the Power Button to return the pump to internal mode.

\[V_{\text{actual}} = V_{\text{observed}} \times R \]

where

\[R = 1 - \left(\frac{D_{\text{tube}}}{D_{\text{column}}} \right)^2 \]

For accuracy, it is important that the water level does not drop below the top of the ceramic foot valve weight.

Note: If you will be using the pump at a different stroke length, or pressure, the pump should be recalibrated under those conditions using the procedure above to ensure accuracy.
4.4 Methods of Externally Triggering or Pacing AD8 and AD9 Pumps

Method of Triggering AD8 and AD9 Pumps through External Control Connector

1. **Switch Closure**
 - Switch closing triggers pump
 - PIN: Blue 3, White 2

2. **NPN Transistor**
 - Base goes high to trigger pump
 - PIN: + Blue 3, - White 2

3. **PNP Transistor**
 - Base goes low to trigger pump
 - PIN: + Blue 3, - White 2

4. **Opto Isolator**
 - PIN: + Blue 3, - White 2

Switch or transistors must be capable of switching 24V DC at 15 milliamperes. Minimum time in low impedance state (ON) is 25 milliseconds. Minimum time in high impedance state (OFF) is 50 milliseconds.

The remote on/off input (using pins 1 and 2) is active in all modes. In the out-of-box configuration, the pump will run when contacts are open. The pump is monitoring these pins for a change in closure condition. Regardless of the pump being on or off, when the contacts close, then the pump will turn on. When the contacts open, the pump will turn off.

The Power Button overrides the remote on/off and can still be used to turn the pump on and off. If the contacts are closed when the on/off button is pressed, the pump will turn off. To restart the pump remotely, the contacts must be opened and then closed again.

These pumps have two operating modes: Local (Pulse Indicator Light flashes green) and Remote (Pulse Indicator Light flashes yellow). Pressing the Mode Selection Button switches between Local and Remote modes. The default configuration for operating mode is Local mode.
4.4.1 Control Modes

4.4.1.1 Local/Internal Mode

- When in Local mode Roytronic Excel pumps run at the speed indicated on the LCD Display.
- The stroking speed can be adjusted from the maximum speed of 120 strokes per minute (SPM) down to 1 stroke per hour (SPH).

4.4.1.2 Changing Displayed Flow Units (AD2, AD8)

1. When in Internal Mode use the Power Button to turn the pump off.
2. Hold the Up Button and Down Button in at the same time until ‘FLO’ is displayed on the LCD Display, then release the buttons.
3. Use the Up or Down Buttons to select the desired units of measure.
4. Press the Power Button and the pump will return to internal mode with the desired units displayed.

4.4.1.3 Remote Mode (for AD8)

In Remote mode the pump can be controlled in a variety of ways: pulse divide, pulse multiply, or analog milliamp input. To cycle through the available modes, start in external mode, then press and hold the Power Button and Mode Selection Button simultaneously for about five seconds.

4.4.1.3.1 Divide Mode (for AD8)

The pump is in Divide Mode when a division symbol (÷) is shown on the left-hand side of the LCD Display. Use the Up Button and Down Button to select the number of incoming pulses received before a stroke occurs. Once the Power Button is pushed to turn the pump on, the LCD Display will show the approximate stroke rate of the pump based on the incoming pulses.

If it is necessary to change the pulse duration required to recognize a pulse from the factory default of 60 ms, hold both the Up Button and Down Button until a number appears followed by the letter ‘m’. This number is the minimum required time in milliseconds needed to count as a pulse. Use the Up Button and Down Button to adjust this number as needed. If no button is pressed for about 4 seconds, the pump will save the value and return to the previous screen.

4.4.1.3.2 Multiply Mode (for AD8)

The pump is in Multiply Mode when a multiplication symbol (×) is shown on the left-hand side of the LCD Display. Use the Up Button and Down Button to select the number strokes that will occur for each incoming pulse. Once the Power Button is pushed to turn the pump on, the LCD Display will count down the number of strokes starting at the multiplier value each time a pulse input is recognized. The strokes will occur every half second until it has counted down to zero. The pump will then wait for the next pulse input.

If it is necessary to change the pulse duration required to recognize a pulse from the factory default of 60 ms, hold both the Up Button and Down Button until a number appears followed by the letter ‘m’. This number is the minimum required time in milliseconds needed to count as a pulse. Use the Up Button and Down Button to adjust this number as needed. If no button is pressed for about 4 seconds, the pump will save the value and return to the previous screen.

4.4.1.3.3 Analog Mode (for AD8)

The pump is in Analog Mode when ‘mA’ is shown on the left-hand side of the LCD Display.

Pressing the Up or Down Button will display ‘P1’ and the milliamp input that corresponds to zero strokes. The Up and Down Buttons can be used to adjust this value. Pressing the Power Button (or waiting for about 8 seconds) will display ‘P2’ and the milliamp input that corresponds to max stroke rate. Note that the maximum stroke rate will be either 120 strokes per minute or 59 strokes per hour. This depends on the stroke speed set in Internal Mode.
5.0 Spare Parts Replacement and Routine Maintenance

LMI metering pumps are designed for trouble-free operation, yet routine maintenance of elastomeric parts is essential for optimum performance. This involves replacing the Liquifram™, cartridge valves, O-rings, and the injection check valve spring. LMI recommends replacing these parts at least once a year; however, frequency will depend on your particular application.

5.1 Depressurizing the Discharge Line (for Pumps Equipped with a 4-FV Only)

ALWAYS wear protective clothing, face shield, safety glasses and gloves when performing any maintenance or replacement on your pump.

To reduce the risk of chemical splash during disassembly or maintenance, all installations should be equipped with line depressurization capability. Using LMI's Four-Function Valve (4-FV) is one way to include this feature.

Read steps 1 and 2 below before proceeding.

1. Be sure the Injection Check Valve is properly installed and is operating. If a shut off valve has been installed downstream of the Injection Valve, it should be closed.

Be sure your relief tubing is connected to your 4-FV and runs back to your solution drum or tank.

2. Turn the black knob on the 4-FV 1/8 turn to the stop. Turn and hold the yellow knob for a few seconds. The discharge line is now depressurized. Keep both valve knobs open until solution drains back down the discharge tubing into the solution tank or drum. Then release the yellow knob, and turn the black knob to its normal position.

5.2 Depressurizing the Discharge Line (for Single-Ball FastPrime™ Heads Only)

ALWAYS wear protective clothing, face shield, safety glasses and gloves when performing any maintenance or replacement on your pump.

Read steps 1 and 2 below before proceeding.

1. Be sure the Injection Check Valve is properly installed and is operating. If a shut off valve has been installed downstream of the Injection Valve, it should be closed.

Be sure your relief tubing is connected to your FastPrime™ valve and runs back to your solution drum or tank.

2. Turn the FastPrime™ knob one-and-a-half turns counter-clockwise 🔃. The discharge line is now depressurized. Keep valve open until solution drains back down the discharge tubing into solution drum or tank. Then turn the knob clockwise 🔃 to tighten knob to closed position.
5.3 Liquifram™ (Diaphragm) Replacement

ALWAYS wear protective clothing, face shield, safety glasses and gloves when working near or performing any maintenance or replacement on your pump. See MSDS information from solution supplier for additional precautions.

LMI metering pumps are designed for trouble-free operation, yet routine maintenance of elastomeric parts is essential for optimum performance. This involves replacing the Liquifram™, cartridge valves, O-rings and the injection check valve spring. LMI recommends replacing these parts at least once a year; however, frequency will depend on your particular application.

When replacing the Liquifram™, the cartridge valves, or O-rings, the injection check valve spring should also be replaced (see next Section 5.4). A Spare Parts Kit or RPM Pro Pac™ kit containing these parts may be obtained from your local distributor.

Replacing the Liquifram™:

1. Carefully depressurize, drain, and disconnect the discharge line (see previous sections in this manual).

2. Place the Foot Valve into a container of water or other neutralizing solution. Turn the pump on to flush the head assembly. Once the pump head has been flushed, lift the Foot Valve out of the solution and continue to pump air into the pump head until the pump head is purged of water or neutralizing solution.

3. Remove the four metric screws using an M4 Allen wrench and washers from the head.

4. Start the pump. While running, set the Stroke Adjustment Knob to 0% and then turn the pump off.

5. With the unit off, unscrew the Liquifram™ by carefully grasping the outer edge and turning it counter-clockwise. Discard old Liquifram™. Remove the Adapter Disk (located behind the Liquifram™) and ensure that the diameter of the raised section is the same as the diameter of the replacement Liquifram™.

6. Remove Adapter Disk and check condition of the Shaft Seal. Replace Shaft Seal if necessary.

7. Replace the Adapter Disk so that the drain hole of the disk is oriented downward, and the mounting holes line up with the mounting holes of the pump.

8. Screw on the new Liquifram™ clockwise until turned all the way in. Start the pump and turn the stroke knob to 100%. Stop the pump.

9. Remount the pump head using the four (4) screws and washers. Tighten in a criss-cross pattern. Torque screws to 25 inch-pounds. After one week of operation, recheck the screws and tighten if necessary.
5.4 Cartridge Valve and O-ring Replacement

ALWAYS wear protective clothing, face shield, safety glasses and gloves when working on or performing any maintenance or replacement on your pump. See MSDS information from solution supplier for additional precautions.

Refer to the LMI Metering Pump Price List for the proper Spare Parts Kit or RPM Pro Pac™ kit number or contact your local LMI stocking distributor.

1. Carefully depressurize and disconnect the discharge line (see Section 5.1 or 5.2 in this manual).

2. Place the Foot Valve into a container of water or other neutralizing solution. Turn the pump on to flush the head assembly. Once the pump has been flushed, lift the Foot Valve out and continue to pump to let air into the pump head until pump is purged of water or neutralizing solution.

If the liquid cannot be pumped due to Liquifram™ rupture, carefully disconnect the suction and discharge tubing using protective clothing, gloves and face shield. Remove the four screws and washers from the head and immerse the head in water or other neutralizing solution.

Spare part replacement kits include specific instructions for valve replacement. Please follow the instructions included with the replacement kit.

3. Carefully disconnect one tubing connection and fitting at a time, then remove and replace the worn valve and O-rings. If necessary, carefully loosen stuck valves by prying side to side using a small screwdriver through the center hole of the valve.

Before disassembling the check valves, note the orientation of the valve.

4. Install new check valves in each location. Ensure that the cartridges are oriented correctly.
5.5 Injection Check Valve Parts Replacement

Depressurize and drain pipeline (or isolate Injection Check Valve point using valves) so that Injection Check Valve can safely be disassembled.

ALWAYS wear protective clothing, face shield, safety glasses and gloves when working near or performing any maintenance or replacement on your pump. See MSDS information from solution supplier for additional precautions.

Refer to the LMI Metering Pump Price List for the proper Spare Parts Kit or RPM Pro Pac™ kit number or contact your local LMI stocking distributor.

1. Isolate Injection Check Valve and depressurize pipe or drain pipeline.

2. Carefully depressurize and disconnect the discharge line (see Section 5.1 or 5.2 in this manual).

Spare part replacement kits include specific instructions for valve replacement. Please follow the instructions included with the replacement kit.

3. Carefully disconnect the tubing leading to the Injection Check Valve, then remove the Injection Check Valve Fitting. Remove and replace the worn spring, seat, ball, and O-ring.

Before disassembling the check valve, note the orientation of the parts.

4. Install a new spring, seat, ball, and O-ring. Ensure that the parts are oriented correctly.
5.6 FastPrime™ Valve O-Ring Replacement

ALWAYS wear protective clothing, face shield, safety glasses and gloves when performing any maintenance or replacement on your pump.

Refer to the LMI Metering Pump Price List for the proper Spare Parts Kit or RPM Pro Pac™ kit number or contact your local LMI stocking distributor.

1. Be sure the Injection Check Valve is properly installed and is operating. If a shut off valve has been installed downstream of the Injection Valve, it should be closed.

Be sure your relief tubing is connected to your FastPrime™ valve and runs back to your solution drum or tank.

2. Turn the FastPrime™ Knob one-and-a-half turns counter-clockwise. This will depressurize the head. Keep valve open. Carefully remove the return line by gently pulling tubing and moving it from side to side to gradually back tubing off of the barbed fitting.

3. Hold return line tubing upright until solution drains back into solution drum or tank.

4. Using a 3/4" (or 19mm) socket or wrench remove Retaining Nut, and pull out the entire FastPrime™ Valve assembly. Remove and replace the two small O-rings.

5. Reinsert the FastPrime™ Valve assembly and retighten the Retaining Nut. Then turn the FastPrime™ Knob clockwise to tighten knob to closed position. To avoid damaging the parts, it is important that the flange on the FastPrime™ Valve is flush with the Retaining Nut prior to reassembly.

INCORRECT

No gap between Flange and Retaining Nut.

CORRECT

No gap between Flange and Retaining Nut.
5.6 FastPrime™ Valve O-Ring Replacement (continued)

6. Recut 1 to 2 inches off the tip of the return line and ensure the end is squared. Press the return line tubing on completely past the barbs.
5.7 Drive Parts List
<table>
<thead>
<tr>
<th>Bubble Number</th>
<th>Description</th>
<th>Bubble Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>EPU O-Ring</td>
<td>230</td>
<td>Control Panel O-Ring</td>
</tr>
<tr>
<td>80</td>
<td>EPU Return Spring</td>
<td>240</td>
<td>Wire Harness</td>
</tr>
<tr>
<td>90</td>
<td>EPU Shim</td>
<td>250</td>
<td>Drive Assembly Screws</td>
</tr>
<tr>
<td>125</td>
<td>Plunger O-Ring</td>
<td>260</td>
<td>Female Stroke Shaft</td>
</tr>
<tr>
<td>130</td>
<td>Retaining Ring</td>
<td>265</td>
<td>Male Stroke Shaft</td>
</tr>
<tr>
<td>132</td>
<td>Stroke Bracket</td>
<td>270</td>
<td>Stroke Shaft O-Ring</td>
</tr>
<tr>
<td>134</td>
<td>Stroke Bracket Screw</td>
<td>285</td>
<td>PCB Attachment Screw</td>
</tr>
<tr>
<td>136</td>
<td>Stroke Bracket Washer</td>
<td>310</td>
<td>Shaft Seal</td>
</tr>
<tr>
<td>140</td>
<td>Drive Housing</td>
<td>320</td>
<td>Adapter Disk</td>
</tr>
<tr>
<td>150</td>
<td>EPU Attachment Bolt</td>
<td>340</td>
<td>Clear Cover</td>
</tr>
<tr>
<td>155</td>
<td>EPU Attachment Washer</td>
<td>502</td>
<td>EPU Assembly</td>
</tr>
<tr>
<td>160</td>
<td>Control Panel</td>
<td>503</td>
<td>Plunger Assembly</td>
</tr>
<tr>
<td>180</td>
<td>Control Board</td>
<td>504</td>
<td>Pole Piece Assembly</td>
</tr>
<tr>
<td>185</td>
<td>Power Board</td>
<td>505</td>
<td>Stroke Knob Assembly</td>
</tr>
<tr>
<td>190</td>
<td>Nameplate</td>
<td>512</td>
<td>Power Cord Assembly</td>
</tr>
<tr>
<td>195</td>
<td>Stroke Dial</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5.8 EPU Wiring Diagram

AD8/AD9 PULSER

POWER CORD

EPU ASSEMBLY

AD2 PULSER

POWER CORD

EPU ASSEMBLY
5.9 Liquid End Parts

For the latest and most accurate information on your liquid end, please refer to the Liquid End Sheets available in the LMI Online Library at: www.lmipumps.com.

1. Select “Online Literature Library” in the Navigation Bar on left.
2. Once on Online Literature Library use “Product” drop down to select “Liquid Handling Assemblies.”
3. Select “Gallery” or “Index” to view Liquid End sheets.

The following images are for reference and may not represent your particular liquid end.

FastPrime™ Liquid End Assembly
AutoPrime™ Liquid End Assembly

DEPENDING ON TUBING SIZE, THE FERRULE GEOMETRY WILL BE DIFFERENT.

DEPENDING ON CARTRIDGE DESIGN, AN O-RING MAY BE PRESENT AS PART OF THE ASSEMBLY.
Stainless Steel Liquid End Assembly
6.0 Wiring Diagrams

5 PIN CONNECTOR

Use 5 pin cable (LMI P/N 48414)

<table>
<thead>
<tr>
<th>PIN</th>
<th>WIRE</th>
<th>SIGNAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Brown</td>
<td>Remote On-Off</td>
</tr>
<tr>
<td>2</td>
<td>White</td>
<td>Ground-Return</td>
</tr>
<tr>
<td>3</td>
<td>Blue</td>
<td>External Pulse Input</td>
</tr>
<tr>
<td>4</td>
<td>Black</td>
<td>Power Supply, 24V 75 mA</td>
</tr>
<tr>
<td>5</td>
<td>Green-Yellow</td>
<td>4-20 mA Input</td>
</tr>
</tbody>
</table>

6 PIN CONNECTOR

Use 6 pin cable (LMI P/N 49035)

<table>
<thead>
<tr>
<th>PIN</th>
<th>WIRE</th>
<th>SIGNAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Red-White</td>
<td>Alarm Output or Internal-External indicator</td>
</tr>
<tr>
<td>2</td>
<td>Red</td>
<td>Alarm Return</td>
</tr>
<tr>
<td>3</td>
<td>Green</td>
<td>Remote Internal-External mode</td>
</tr>
<tr>
<td>4</td>
<td>Red-Yellow</td>
<td>Pulse Output</td>
</tr>
<tr>
<td>5</td>
<td>Red-Black</td>
<td>4-20 mA Output</td>
</tr>
<tr>
<td>6</td>
<td>Red-Blue</td>
<td>Ground-Return</td>
</tr>
</tbody>
</table>
INPUT WIRING DIAGRAMS

HALL EFFECT FLOWMETER
INPUT CONNECTION REFERENCE:

TANK LOW
INPUT CONNECTION REFERENCE:

TANK EMPTY
INPUT CONNECTION REFERENCE:

NOTE: A CABLE CORD SET FOR THIS APPLICATION IS INCLUDED WITH AN OPTIONAL LMI DUAL LEVEL SWITCH ASSEMBLY P/N 49249

NOTE: USE ANY TRIGGERING METHOD SHOWN AT BEGINNING OF SEC. 4.4.
INPUT WIRING DIAGRAMS

REMOTE ON-OFF
INPUT CONNECTION REFERENCE:

EXTERNAL PULSE
INPUT CONNECTION REFERENCE:

INTERNAL/EXTERNAL CONTROL
INPUT CONNECTION REFERENCE:

NOTE:
USE ANY TRIGGERING METHOD SHOWN AT BEGINNING OF Sec. 4.4.
INPUT WIRING DIAGRAM

4-20 MA
INPUT CONNECTION REFERENCE:

DUMMY UNIT
DO NOT EXCEED
22MA

PIN 5
(OF 5 PIN CONN)

PIN 2
(OF 5 PIN CONN)

SHIELD GROUND

R48
121

NOTE: 0 TO 20 INPUT IMPEDENCE IS DYNAMIC AND WILL WORK WITH supplying CURRENTS NEEDING 130 OHM OR ABOVE IMPEDENCE
OUTPUT WIRING DIAGRAMS

PULSE
OUTPUT CONNECTION REFERENCE:

<table>
<thead>
<tr>
<th>Cable Side</th>
<th>Pump Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIN 4 (OF 6 PIN CONN)</td>
<td>U27</td>
</tr>
<tr>
<td>RED/YEL</td>
<td>P22501</td>
</tr>
<tr>
<td>RED/BLU</td>
<td>274</td>
</tr>
</tbody>
</table>

100MS PULSE OUT

MAX COLLECTOR CURRENT 50MA

NOTE: WHEN USING A "PULL UP" OPTION
USE A 10K RESISTOR AND A 24VDC SOURCE
(CAN BE USED WITH PIN 5 OF 5 PIN CONN)

4 TO 20 MA
OUTPUT CONNECTION REFERENCE:

<table>
<thead>
<tr>
<th>Cable Side</th>
<th>Pump Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIN 5 (OF 6 PIN CONN)</td>
<td>+24V</td>
</tr>
<tr>
<td>RED/BLK</td>
<td>R51</td>
</tr>
<tr>
<td>RED/BLU</td>
<td>960</td>
</tr>
<tr>
<td>PIN 6 (OF 6 PIN CONN)</td>
<td>19</td>
</tr>
</tbody>
</table>

4-20MA MEASURING DEVICE

NOTE:

ALARM
OUTPUT CONNECTION REFERENCE:

<table>
<thead>
<tr>
<th>Cable Side</th>
<th>Pump Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIN 1 (OF 6 PIN CONN)</td>
<td>U17</td>
</tr>
<tr>
<td>RED/YMT</td>
<td>R45</td>
</tr>
<tr>
<td>RED</td>
<td>360</td>
</tr>
<tr>
<td>PIN 2 (OF 6 PIN CONN)</td>
<td>ADY212 SOP4</td>
</tr>
</tbody>
</table>

MAXIMUM LOAD 35MA

NOTE: USE TO SWITCH ON 24V SOURCE OR
LESS, DO NOT USE TO SWITCH ON AC LINE
VOLTAGE WITHOUT RELAY. RELAY COILS
SHOULD BE 24VDC OR LESS WITH MAXIMUM
CURRENT OF 35MA.
Troubleshooting

<table>
<thead>
<tr>
<th>PROBLEM</th>
<th>POSSIBLE CAUSE</th>
<th>SOLUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump Will Not Prime</td>
<td>1. Pump not turned on or plugged in.</td>
<td>1. Turn on pump/plug in pump.</td>
</tr>
<tr>
<td></td>
<td>2. Output dials not set properly.</td>
<td>2. Always prime pump with speed and stroke at 100%.</td>
</tr>
<tr>
<td></td>
<td>3. Foot Valve not in vertical position on bottom of tank.</td>
<td>3. Foot Valve must be vertical (see Foot Valve Installation, Section 3.7).</td>
</tr>
<tr>
<td></td>
<td>4. Pump suction lift too high.</td>
<td>4. Maximum suction lift is 5 ft (1.5 m). Pumps with High Viscosity Liquid Handling Assemblies require flooded suction.</td>
</tr>
<tr>
<td></td>
<td>5. Suction tubing is curved or coiled in tank.</td>
<td>5. Suction tubing must be vertical. Use LMI ceramic weight supplied with pump (see Section 3.7).</td>
</tr>
<tr>
<td></td>
<td>6. Fittings are over tightened.</td>
<td>6. Do not overtighten fittings. This causes seal rings to distort and not seat properly which causes pump to leak back or lose prime.</td>
</tr>
<tr>
<td></td>
<td>7. Air trap in suction valve tubing.</td>
<td>7. Suction tubing should be as vertical as possible. AVOID FALSE FLOODED SUCTION! (see Section 3.2.1).</td>
</tr>
<tr>
<td></td>
<td>8. Too much pressure at discharge. (Pumps without multi-function valve,)</td>
<td>8. Shut off valves in pressurized line. Disconnect tubing at injection check valve (see Priming Section 4.2). When pump is primed, reconnect discharge tubing.</td>
</tr>
<tr>
<td></td>
<td>9. Air leak around fitting.</td>
<td>9. Check for missing or damaged O-rings at ends of fittings.</td>
</tr>
<tr>
<td>Pump Loses Prime</td>
<td>1. Solution container ran dry.</td>
<td>1. Refill container with solution and reprime (see Section 4.2).</td>
</tr>
<tr>
<td></td>
<td>2. Foot Valve is not in a vertical position on the bottom of the tank.</td>
<td>2. Foot Valve must be vertical (see Foot Valve Installation, Section 3.7).</td>
</tr>
<tr>
<td></td>
<td>3. Pump suction lift is too high.</td>
<td>3. Maximum suction lift is 5 ft (1.5 m). Pumps with High Viscosity Liquid Handling Assemblies require flooded suction.</td>
</tr>
<tr>
<td></td>
<td>4. Suction tubing is curved or coiled in tank.</td>
<td>4. Suction tubing must be vertical. Use LMI ceramic weight supplied with pump (see Section 3.7).</td>
</tr>
<tr>
<td></td>
<td>5. Fittings are over tightened.</td>
<td>5. DO NOT OVERTIGHTEN FITTINGS. This causes seal rings to distort and not seat properly which caused pump to leak back or lose prime.</td>
</tr>
<tr>
<td></td>
<td>6. Air trap in suction valve tubing.</td>
<td>6. Suction tubing should be as vertical as possible. AVOID FALSE FLOODED SUCTION! (see Section 3.2.1).</td>
</tr>
<tr>
<td></td>
<td>7. Air leak on suction side.</td>
<td>7. Check for pinholes, cracks. Replace if necessary.</td>
</tr>
<tr>
<td>PROBLEM</td>
<td>POSSIBLE CAUSE</td>
<td>SOLUTION</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Leakage at tubing</td>
<td>1. Worn tubing ends.</td>
<td>1. Cut about 1 in (25 mm) off tubing and then replace as before.</td>
</tr>
<tr>
<td></td>
<td>2. Loose or cracked fitting.</td>
<td>2. Replace fitting if cracked. Carefully hand tighten fittings. DO NOT USE PIPE WRENCH. An additional 1/8 or 1/4 turn may be necessary</td>
</tr>
<tr>
<td></td>
<td>3. Worn seal rings.</td>
<td>3. Replace balls and seal rings (see Section 5.4)</td>
</tr>
<tr>
<td>Low Output or Failure to Pump Against Pressure</td>
<td>1. Pump’s maximum pressure rating is exceeded by injection pressure.</td>
<td>1. Injection pressure cannot exceed pump’s maximum pressure. See pump data plate.</td>
</tr>
<tr>
<td></td>
<td>2. Worn Seal Rings.</td>
<td>2. Worn seal rings or cartridge valves may need replacement (see Section 5.4).</td>
</tr>
<tr>
<td></td>
<td>3. Ruptured Liquifram™.</td>
<td>3. Replace Liquifram™ (see Section 5.3).</td>
</tr>
<tr>
<td></td>
<td>4. Incorrect stroke length.</td>
<td>4. Recalibrate Output (see Section 4.3.2).</td>
</tr>
<tr>
<td></td>
<td>5. Tubing run on discharge may be too long.</td>
<td>5. Longer tubing runs may create frictional losses sufficient to reduce pump’s pressure rating. Consult factory for more information.</td>
</tr>
<tr>
<td></td>
<td>6. Clogged Foot Valve strainer.</td>
<td>6. Remove Foot Valve strainer when pumping slurries or when solution particles cause strainer to clog.</td>
</tr>
<tr>
<td>Failure to Run</td>
<td>1. Pump not turned on or plugged in.</td>
<td>1. Turn on or plug in pump.</td>
</tr>
<tr>
<td></td>
<td>2. EPU failure.</td>
<td>2. Disassemble pump and measure resistance across the EPU terminals. If this measures as an open circuit then the EPU should be replaced. (see Section 5.8).</td>
</tr>
<tr>
<td></td>
<td>3. Pulser failure.</td>
<td>3. The pulser should be replaced if EPU checks out OK. Consult supplier or factory.</td>
</tr>
<tr>
<td>Excessive Pump Output</td>
<td>1. Syphoning. (Pumping downhill without a multi-function valve).</td>
<td>1. Move injection point to a pressurized location or install an LMI 4-FV (see Section 3.4).</td>
</tr>
<tr>
<td></td>
<td>2. Little or no pressure at injection point.</td>
<td>2. If pressure at injection point is less than 25 psi (1.7 Bar), an LMI 4-FV should be installed (see Section 3.4).</td>
</tr>
<tr>
<td></td>
<td>3. Excessive strokes per minute.</td>
<td>3. Replace pulser or resistor. Consult factory.</td>
</tr>
</tbody>
</table>