This manual is to be used in addition to Reliance Manual B-3629-12 or USEM Manual INS64-174A included with the pump and the Control Panel drawing provided with the control panel.

Explosion Proof Wastewater Pumps
Listed Class 1, Groups C and D Hazardous Locations

INSTALLATION, OPERATION AND MAINTENANCE INSTRUCTIONS
Owner’s Information

Pump Model Number: ____________________________
Pump Serial Number: ____________________________
Control Model Number: ________________________
Dealer: __
Dealer Phone No.: _______________________________
Date of Purchase: ___________ Installation: ________

Current Readings at Startup:

<table>
<thead>
<tr>
<th>1Ø</th>
<th>3Ø</th>
<th>L1-2</th>
<th>L2-3</th>
<th>L3-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amps: ______</td>
<td>Amps: ______</td>
<td>______</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>Volts: ______</td>
<td>Volts: ______</td>
<td>______</td>
<td>______</td>
<td>______</td>
</tr>
</tbody>
</table>
SAFETY INSTRUCTIONS

TO AVOID SERIOUS OR FATAL PERSONAL INJURY OR MAJOR PROPERTY DAMAGE, READ AND FOLLOW ALL SAFETY INSTRUCTIONS IN MANUAL AND ON PUMP.

THIS MANUAL IS INTENDED TO ASSIST IN THE INSTALLATION AND OPERATION OF THIS UNIT AND MUST BE KEPT WITH THE PUMP.

This is a SAFETY ALERT SYMBOL. When you see this symbol on the pump or in the manual, look for one of the following signal words and be alert to the potential for personal injury or property damage.

WARNING

WARNING	WARNS OF HAZARDS THAT WILL CAUSE SERIOUS PERSONAL INJURY, DEATH OR重大 PROPERTY DAMAGE.
WARNING	WARNS OF HAZARDS THAT CAN CAUSE SERIOUS PERSONAL INJURY, DEATH OR MAJOR PROPERTY DAMAGE.
CAUTION	WARNS OF HAZARDS THAT CAN CAUSE PERSONAL INJURY OR PROPERTY DAMAGE.

NOTICE: INDICATES SPECIAL INSTRUCTIONS WHICH ARE VERY IMPORTANT AND MUST BE FOLLOWED.

THOROUGHLY REVIEW ALL INSTRUCTIONS AND WARNINGS PRIOR TO PERFORMING ANY WORK ON THIS PUMP.

MAINTAIN ALL SAFETY DECALS.

WARNING

| WARNING | ALL ELECTRICAL WORK MUST BE PERFORMED BY A QUALIFIED TECHNICIAN. ALWAYS FOLLOW THE NATIONAL ELECTRICAL CODE (NEC), OR THE CANADIAN ELECTRICAL CODE, AS WELL AS ALL LOCAL, STATE AND PROVINCIAL CODES. CODE QUESTIONS SHOULD BE DIRECTED TO YOUR LOCAL ELECTRICAL INSPECTOR. FAILURE TO FOLLOW ELECTRICAL CODES AND OSHA SAFETY STANDARDS MAY RESULT IN PERSONAL INJURY OR EQUIPMENT DAMAGE. FAILURE TO FOLLOW MANUFACTURER’S INSTALLATION INSTRUCTIONS MAY RESULT IN ELECTRICAL SHOCK, FIRE, HAZARDOUS VOLTAGE, PERSONAL INJURY OR DEATH, DAMAGED EQUIPMENT, PROVIDE UNSATISFACTORY PERFORMANCE AND MAY VOID MANUFACTURER’S WARRANTY. |
| WARNING | PUMPS ARE LISTED FOR USE IN WATER AND SEWAGE AS CLASS 1, GROUPS C AND D HAZARDOUS LOCATIONS. AS DEFINED BY THE NEC HANDBOOK, A CLASS 1 LOCATION IS ONE IN WHICH FLAMMABLE GASES OR VAPORS MAY BE PRESENT IN QUANTITIES SUFFICIENT TO PRODUCE EXPLOSIVE OR IGNITABLE MIXTURES. SEE THE NEC HANDBOOK FOR GROUPS C AND D DEFINITIONS. |

WARNING

WARNING	SEE SPECIFIC PUMP AND MOTOR NAMEPLATES FOR ALL AGENCY LISTINGS.
WARNING	SEE MOTOR NAMEPLATE FOR ALL ELECTRICAL RATINGS.
WARNING	THE USER MUST PROVIDE AN APPROPRIATE MOTOR STARTER (CONTROL PANEL) WITH THERMAL (HIGH TEMPERATURE) PROTECTION, OVER CURRENT PROTECTION AND MOISTURE DETECTION CIRCUITS. THE OVER CURRENT PROTECTION MUST PROVIDE CLASS 10 QUICK TRIP PROTECTION. CONSULT MOTOR INSTALLATION MANUAL AS WELL AS THE NATIONAL ELECTRIC CODE, CANADIAN ELECTRIC CODE, STATE, PROVINCIAL AND/OR OTHER LOCAL CODES WHICH MAY APPLY.

WARNING

| WARNING | THIS MOTOR IS RATED FOR CONTINUOUS DUTY WHEN FULLY SUBMERGED IN LIQUID AND 15-MINUTE DUTY IN AIR WHEN OPERATED AT NAMEPLATE HP. DO NOT EXCEED 15 MINUTES IN AIR DUTY RATING. CONSULT MOTOR MANUAL FOR FURTHER INFORMATION. |

PRE-INSTALLATION CHECKS

Open all cartons and inspect for shipping damage. Report any damage to your supplier or shipping carrier immediately.

Verify that all equipment is the correct voltage and phase. Warranty does not cover damage caused by connecting pumps and controls to an incorrect power source (voltage/phase supply).

Record the model numbers and serial numbers from the pumps and control panel on the front of this instruction manual for future reference. Give it to the owner or affix it to the control panel when finished with the installation.

LIFTING OF PUMP

| WARNING | DO NOT LIFT, CARRY OR HANG PUMP BY THE ELECTRICAL CABLES. DAMAGE TO THE ELECTRICAL CABLES CAN CAUSE SHOCK, BURNS OR DEATH. |

Lift the pump with an adequately sized chain or cable attached to the lifting lugs on the motor. DO NOT damage electrical and sensor cables while raising and lowering unit.

GUIDE RAIL SYSTEM

| WARNING | HAZARDOUS CLASS 1 ENVIRONMENTS REQUIRE NON-SPARKING GUIDE RAIL OR DISCONNECT EQUIPMENT. MATING PARTS CONSTRUCTED OF BRASS OR STAINLESS STEEL WILL PREVENT SPARKS DURING EQUIPMENT INSTALLATION AND REMOVAL. WE OFFER THE A10-30B, A10-40B AND A10-60B CAST IRON AND BRASS GUIDE RAIL ASSEMBLIES FOR USE IN THESE LOCATIONS. |

Typical wastewater collection systems are possibly dangerous environments due to gases collected in the wet well. Most codes do not allow personnel to enter a wetwell without the correct protective equipment and training. Guide rail systems are designed to allow easy removal of the pump without the need for entry into the wetwell or need to disturb piping.

An optional guide rail system facilitates pump installation and removal for inspection and maintenance. Guide rails eliminate this safety concern. They save time as there is no need to disturb piping to pull a pump for service.

NOTICE: FOLLOW THE INSTALLATION INSTRUCTIONS THAT ARE SUPPLIED WITH THE GUIDE RAIL SYSTEM.

Installation of the guide rail should locate the pump opposite the influent opening preventing stagnate areas where solids can settle.

The pit floor must be flat under the guide rail base and have sufficient loading capacity to support the entire weight of the guide rail, discharge piping and the pump. See Typical Installations Drawings.
PIPING

Discharge piping should be no smaller than the pump discharge diameter and kept as short as possible, avoiding unnecessary fittings to minimize friction losses.

Install an adequately sized check valve matched to the solids handling capability of the pump to prevent fluid backflow. Backflow can allow the pump to “turbine” backwards and may cause premature seal and/or bearing wear. If the pump is turning backwards when it is called on to start the increased torque may cause damage to the pump motor and/or motor shaft and some single-phase pumps may actually run backwards.

Install an adequately sized gate valve AFTER the check valve for pump, plumbing and check valve maintenance.

Important – Before pump installation. Drill a 1/8” (4.8mm) relief hole in the discharge pipe. It should be located within the wetwell, 2” (51mm) above the pump discharge but below the check valve. The relief hole allows any air to escape from the casing. Allowing liquid into the casing will insure that the pump can start when the liquid level rises. Unless a relief hole is provided, a bottom intake pump could “air lock” and will not pump water even though the impeller turns.

All piping must be adequately supported, so as not to impart any piping strain or loads on the pump.

The pit access cover must be of sufficient size to allow for inspection, maintenance and crane or hoist service.

PUMP CONTROL PANELS AND WIRING

⚠️ DANGER Mandatory Control Panel Features: Due to the Hazardous environment and the Class 1 Listing on the equipment, the pumps and float switches require special circuitry in the control panel for safe, reliable operation and to comply with code. The following panel options are required to insure the warranty and Agency Listing are maintained.

⚠️ DANGER Intrinsically Safe Relays: Class 1 explosion proof pumps are normally used in areas where there is a danger created due to potentially explosive gases or fluids. It is important that all electrical devices in the Class 1 wetwell are safe in that environment. If using float switches you must use “intrinsically safe relays” to power the control float switches. These relays operate on very low voltage and amperage to eliminate the danger of a spark in the wetwell in the event a power cord becomes damaged or severed. Intrinsically Safe Relays are available as a panel option from most panel suppliers. The intrinsically safe sensor wiring must be separated from other input wiring in separate conduits or raceways. Other level control systems are available on the market and may be applicable for this type environment, consult with your control manufacturer for specific data.

⚠️ WARNING Moisture Detection System: The pumps require a moisture detection circuit, also referred to as a “Seal Fail Circuit”, built into the control panel for proper operation and to maintain the Class 1 Listing. The circuit in the control panel connects to the motor’s moisture sensing probes, control leads W1 and W2, and signals a failure of the outer seal. Compatible CentriPro™, ITT Industries Inc. controls are available through your authorized pump distributor and from Charles Warrick Co. in Royal Oak, MI. Failure to provide a seal failure circuit for the moisture sensing probes will void the warranty and the agency listing. See “Moisture Detection System” in the Motor Manual included with the pump.

⚠️ WARNING Thermal (High Temperature) Protection System: The pumps contain a built-in “Thermal Protection System” which must be connected in series with the holding coil of the magnetic starter in the control panel. Control leads P1 and P2 are used for this connection. Failure to properly connect or utilize this system voids the motor warranty and the agency listing. See “Thermal Protection System” in the Motor Manual included with the pump.

⚠️ WARNING Overload (Over Current) Protection: Class 10, quick-trip, overload protection must be provided in both three phase and single phase controls. The overload protection is to protect against over current as opposed to the over temperature protection provided by the Thermal Protection Circuit. The overload protection may be accomplished by using Class 10 adjustable solid state overloads, as used on the Furnas Class 14, ESP100 starter or bimetal ambient compensated “heater” overloads.

WIRING AND GROUNDING

Important notice: Read Safety Instructions before proceeding with any wiring.

- Use only stranded copper wire to pump/motor and ground. The ground wire must be at least as large as the power supply wires. Wires should be color coded for ease of maintenance and troubleshooting.
- Install wire and ground according to the National Electrical Code (NEC), or the Canadian Electrical Code, as well as all local, state and provincial codes.
- Install an all leg disconnect switch where required by code.
- Disconnect and lockout electrical power before performing any service or installation.
- The electrical supply voltage and phase must match all equipment requirements. Incorrect voltage or phase can cause fire, motor and control damage, and voids the warranty. See motor nameplate for all electric ratings.
- All splices must be waterproof. If using splice kits follow manufacturer’s instructions.
- Select the correct type and NEMA grade junction box for the application and location. The junction box must insure dry, safe wiring connections.
- Seal all controls from gases present which may damage electrical components.

⚠️ WARNING Failure to permanently ground the pump, motor and controls before connecting to power can cause shock, burns or death.

SELECTING AND WIRING

PUMP CONTROL PANELS AND SWITCHES

MATCH EQUIPMENT TO POWER SUPPLY:

Important: Always match the pump nameplate Amps, Voltage, Phase and HP ratings to your control panel and power supply. Any problem or questions pertaining to another brand control must be referred to that control supplier or manufacturer. Our technical people have no technical schematics or trouble shooting information for other companies’ controls.
INSTALLATION
Control panels are shipped with instructions and wiring diagrams. Use those instructions in conjunction with this IOM. Electrical installation should be performed only by qualified technicians.

ALARMS:
We recommend the installation of an alarm on all Wastewater pump installations. Many standard control panels come equipped with alarm circuits. If a control panel is not used, a stand alone high liquid level alarm is available. The alarm alerts the owner of a high liquid level in the system so they can contact the appropriate service personnel to investigate the situation.

OPTIONAL PANEL FEATURES:
Guaranteed Pump Submergence Float: Many engineers specify a redundant OFF float, also referred to as a Guaranteed Pump Submergence Circuit. This provides a second OFF float as protection from “OFF” float failure or hang up which protects the pump(s) from running dry.

FLOAT SWITCHES
We recommend using a narrow angle hermetically sealed mercury float switch such as Model Number A2K23(W) or an equivalent in Class 1 hazardous environments. The A2K23(W) can be ordered with longer cords by changing the 4th digit in the number, all lengths are acceptable. They are designed for use with Intrinsically Safe Relays.

OFF Float: Should be set at or above the top of the pump/motor dome. This will insure that the motor is properly cooled and provide the best overall pump life. The pump should be fully submerged when running. The outer (lower) shaft seal must be in liquid when motor is operated, whether motor is submerged or in air. Seal life will be affected if run dry. Exception: it is allowable to bump or jog the motor for a few seconds to check impeller rotation! See Motor Manual under Application.

Guaranteed Pump Submergence Float: When used this should be the lowest float. Set a few inches below the other OFF Float.

ON Float(s): Should be set far enough above the highest OFF Float to allow the pump(s) to run for a 2 minute cycle.

Alarm Float: Set above the ON float(s) and below the basin inlet.
See Float Switch and Panel Chart.

OPERATION
Fill the wetwell with clear water.
Place Control Panel switch(es) in Automatic position and thoroughly test the operation of the ON, OFF, Alarm and, where used, the Guaranteed Pump Submergence Floats. Important: Failure to provide a Neutral from the power supply to a 1O Control Panel will not allow the panel control circuit to operate. The Neutral is necessary to complete the 115 volt control circuit.
Check voltage and amperage and record data on the front of this manual for future reference. Compare the amperage readings to the pump nameplate maximum amperage. If higher than nameplate amperage investigate cause. Operating the pump off the curve, i.e. with too little head or with high or low voltage will increase amperage. The motor will operate with frequency not more than 5% and voltage not more than 10% above or below pump nameplate data. Performance within this range will not necessarily be the same as the published performance at the exact rated nameplate frequency and voltage. Correct the problem before proceeding. Three phase unbalance is also a possible cause. See the Section on Three Phase Power Unbalance and follow the instructions listed.
Reset the Alarm circuit, place pump switch(es) in the Automatic position and Control Switch in ON position. The system is now ready for automatic operation.
Explain the operation of the pumps, controls and alarms to the end user. Leave the paperwork with the owner or at the control panel if in a dry, secure location.
TYPICAL FLOAT SWITCH PLACEMENT

The charts show the required switch quantities and the function of each in a typical system.

Simplex System:

Three (3) floats are for: Pump OFF, Pump ON, Alarm ON/OFF.

Four (4) floats are for: Guaranteed Pump Submergence or 2nd Pump OFF, Pump OFF, Pump ON, Alarm ON/OFF.

Duplex System:

Four (4) floats are for: Pumps OFF, Lead Pump ON, Lag Pump ON, Alarm ON.

Five (5) floats are for: Guaranteed Pump Submergence or 2nd Pump(s) OFF, Pump(s) OFF, Lead Pump ON, Lag Pump On, Alarm ON.

The OFF float(s) is the lowest float and the Alarm will always be the uppermost float.

ENGINEERING DATA

Engineering data for specific models may be found in your catalog and on our website (address is on the cover).

Control panel wiring diagrams are shipped with the control panels. Please use the control panel drawings in conjunction with this instruction manual to complete the wiring.

<table>
<thead>
<tr>
<th>PUMP OPERATION</th>
<th>Minimum Submergence</th>
<th>Maximum Fluid Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous Duty</td>
<td>Fully Submerged</td>
<td>Continuous Operation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>104°F 40°C</td>
</tr>
</tbody>
</table>

Single-Action Float Switch
"Typical" Installation
THREE PHASE POWER UNBALANCE

A full three phase supply consisting of three individual transformers or one three phase transformer is recommended. “Open” delta or wye connections using only two transformers can be used, but are more likely to cause poor performance, overload tripping or early motor failure due to current unbalance.

Check the current in each of the three motor leads and calculate the current unbalance as explained below.
If the current unbalance is 2% or less, leave the leads as connected.
If the current unbalance is more than 2%, current readings should be checked on each leg using each of the three possible hook-ups. Roll the motor leads across the starter in the same direction to prevent motor reversal.

To calculate percent of current unbalance:
A. Add the three line amp values together.
B. Divide the sum by three, yielding average current.
C. Pick the amp value which is furthest from the average current (either high or low).
D. Determine the difference between this amp value (furthest from average) and the average.
E. Divide the difference by the average. Multiply the result by 100 to determine percent of unbalance.

Current unbalance should not exceed 5% at service factor load or 10% at rated input load. If the unbalance cannot be corrected by rolling leads, the source of the unbalance must be located and corrected. If, on the three possible hookups, the leg farthest from the average stays on the same power lead, most of the unbalance is coming from the power source.

Contact your local power company to resolve the imbalance.

INSULATION RESISTANCE READINGS

Normal Ohm and Megohm Values between all leads and ground

<table>
<thead>
<tr>
<th>Condition of Motor and Leads</th>
<th>Ohm Value</th>
<th>Megohm Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A new motor (without drop cable).</td>
<td>20,000,000 (or more)</td>
<td>20 (or more)</td>
</tr>
<tr>
<td>A used motor which can be reinstalled in well.</td>
<td>10,000,000 (or more)</td>
<td>10 (or more)</td>
</tr>
<tr>
<td>Motor in well. Readings are for drop cable plus motor.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New motor.</td>
<td>2,000,000 (or more)</td>
<td>2 (or more)</td>
</tr>
<tr>
<td>Motor in good condition.</td>
<td>500,000 - 2,000,000</td>
<td>.5 - 2</td>
</tr>
<tr>
<td>Insulation damage, locate and repair.</td>
<td>Less than 500,000</td>
<td>Less than .5</td>
</tr>
</tbody>
</table>

Insulation resistance varies very little with rating. Motors of all HP, voltage and phase ratings have similar values of insulation resistance.

Insulation resistance values above are based on readings taken with a megohmmeter with a 500V DC output. Readings may vary using a lower voltage ohmmeter, consult factory if readings are in question.
TROUBLESHOOTING

WARNING

Hazardous voltage

FAILURE TO DISCONNECT AND LOCKOUT ELECTRICAL POWER BEFORE ATTEMPTING ANY SERVICE CAN CAUSE SHOCK, BURNS OR DEATH.

## Symptom	Probable Cause	Recommended Action
MOTOR NOT RUNNING

NOTE: If circuit breaker “OPENS” repeatedly, DO NOT reset. Call qualified electrician.

- a) Manual operation
 - Motor thermal protector tripped.

 Allow motor to cool. Insure minimum pump submergence. Clear debris from casing and impeller.

 - Open circuit breaker or blown fuse.

 Determine cause, call a qualified electrician.

 - Pump impeller binding or jammed.

 Check motor amp draw. If two or more times higher than listed on pump nameplate, impeller is locked, motor bearings or shaft is damaged. Clear debris from casing and impeller, consult with dealer.

 - Power cable is damaged.

 Resistance between power leads and ground should read infinity. If any reading is incorrect, call a qualified electrician.

 - Inadequate electrical connection in control panel.

 Inspect control panel wiring. Call a qualified electrician.

 - Defective liquid level switch.

 With switch disconnected, check continuity while activating liquid level switch. Replace switch, as required.

 - Insufficient liquid level to activate controls.

 Allow liquid level to rise 3” to 4” (76 mm - 101 mm) above turn-on level.

 - Liquid level cords tangled.

 Untangle cords and insure free operation.

- b) Automatic operation
 - No neutral wire connected to control panel.

 Inspect control panel wiring. Call a qualified electrician.

 - Inadequate electrical connection in control panel.

 Inspect control panel wiring. Call a qualified electrician.

 - Defective liquid level switch.

 With switch disconnected, check continuity while activating liquid level switch. Replace switch, as required.

 - Insufficient liquid level to activate controls.

 Allow liquid level to rise 3” to 4” (76 mm - 101 mm) above turn-on level.

 - Liquid level cords tangled.

 Untangle cords and insure free operation.

PUMP WILL NOT TURN OFF

- Liquid level cords tangled.

 Untangle cords and insure free operation.

- Pump is air locked.

 Shut off pump for approximately one minute, then restart. Repeat until air lock clears. If air locking persists in a system with a check valve, a \(\frac{3}{16} \)" (4.8 mm) hole may be drilled in the discharge pipe approximately 2" (51 mm) above the discharge connection.

- Influent flow is matching pump’s discharge capacity.

 Larger pump may be required.

LITTLE OR NO LIQUID DELIVERED BY PUMP

- Check valve installed backwards, plugged or stuck closed.

 Check flow arrow on valve and check valve operation.

- Excessive system head.

 Consult with dealer.

- Pump inlet plugged.

 Inspect and clear as required.

- Improper voltage or wired incorrectly.

 Check pump rotation, voltage and wiring. Consult with qualified electrician.

- Pump is air locked.

 See recommended action, above.

- Impeller is worn or damaged.

 Inspect impeller, replace as required.

- Liquid level controls defective or improperly positioned.

 Inspect, readjust or replace as required.

PUMP CYCLES CONSTANTLY

- Discharge check valve inoperative.

 Inspect, repair or replace as required.

- Sewage containment area too small.

 Consult with dealer.

- Liquid level controls defective or improperly positioned.

 Inspect, readjust or replace as required.

- Influent excessive for this size pump.

 Consult with dealer.
TYPICAL INSTALLATIONS

Typical Effluent, Sewage and Dewatering Pump Installations
GOULD'S WATER TECHNOLOGY LIMITED WARRANTY

This warranty applies to all water systems pumps manufactured by Goulds Water Technology.

Any part or parts found to be defective within the warranty period shall be replaced at no charge to the dealer during the warranty period. The warranty period shall exist for a period of twelve (12) months from date of installation or eighteen (18) months from date of manufacture, whichever period is shorter.

A dealer who believes that a warranty claim exists must contact the authorized Goulds Water Technology distributor from whom the pump was purchased and furnish complete details regarding the claim. The distributor is authorized to adjust any warranty claims utilizing the Goulds Water Technology Customer Service Department.

The warranty excludes:

(a) Labor, transportation and related costs incurred by the dealer;
(b) Reinstallation costs of repaired equipment;
(c) Reinstallation costs of replacement equipment;
(d) Consequential damages of any kind; and,
(e) Reimbursement for loss caused by interruption of service.

For purposes of this warranty, the following terms have these definitions:

(1) “Distributor” means any individual, partnership, corporation, association, or other legal relationship that stands between Goulds Water Technology and the dealer in purchases, consignments or contracts for sale of the subject pumps.
(2) “Dealer” means any individual, partnership, corporation, association, or other legal relationship which engages in the business of selling or leasing pumps to customers.
(3) “Customer” means any entity who buys or leases the subject pumps from a dealer. The “customer” may mean an individual, partnership, corporation, limited liability company, association or other legal entity which may engage in any type of business.

THIS WARRANTY EXTENDS TO THE DEALER ONLY.

Goulds is a registered trademark of Goulds Pumps, Inc. and is used under license.
Este manual debe usarse además del Manual Reliance B-3629-12 o USEM Manual INS64-174A incluido con la bomba y el dibujo del Panel de Control suministrado con el panel de control.

Bombas para aguas residuales a prueba de explosión
Aprobadas para localidades peligrosas de Clase 1, Grupos C y D
INSTRUCCIONES DE INSTALACIÓN, FUNCIONAMIENTO Y MANTENIMIENTO
Información del propietario

Número de modelo de la bomba: ____________________
Número de serie de la bomba: ____________________
Número de modelo del control: ____________________
Agente: __
No. telefónico del agente: _______________________
Fecha de compra: __________ Instalación: ________

Lecturas actuales en el momento de la puesta en marcha:

<table>
<thead>
<tr>
<th>1Ø</th>
<th>3Ø</th>
<th>L1-2</th>
<th>L2-3</th>
<th>L3-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amperios: ____</td>
<td>Amperios: ____</td>
<td>____</td>
<td>____</td>
<td>____</td>
</tr>
<tr>
<td>Voltios: ____</td>
<td>Voltios: ____</td>
<td>____</td>
<td>____</td>
<td>____</td>
</tr>
</tbody>
</table>
INSTRUCCIONES DE SEGURIDAD

PARA EVITAR LESIONES PERSONALES GRAVES O AÚN FATALES Y SERIOS DAÑOS MATERIALES, LEA Y SIGA TODAS LAS INSTRUCCIONES DE SEGURIDAD EN EL MANUAL Y EN LA BOMBA.

ESTE MANUAL HA SIDO CREADO COMO UNA GUÍA PARA LA INSTALACIÓN Y OPERACIÓN DE ESTA UNIDAD Y SE DEBE CONSERVAR JUNTO A LA BOMBA.

Éste es un SÍMBOLO DE ALERTA DE SEGURIDAD. Cuando vea este símbolo en la bomba o en el manual, busque una de las siguientes palabras de señal y esté alerta a la probabilidad de lesiones personales o daños materiales.

PELIGRO: Advierte los peligros que CAUSARÁN graves lesiones personales, la muerte o daños materiales mayores.

ADVERTENCIA: Advierte los peligros que PUEDEN causar graves lesiones personales, la muerte o daños materiales mayores.

PRECAUCIÓN: Advierte los peligros que PUEDEN causar lesiones personales o daños materiales.

AVISO: INDICA INSTRUCCIONES ESPECIALES QUE SON MUY IMPORTANTES Y QUE SE DEBEN SEGUIR.

EXAMINE BIEN TODAS LAS INSTRUCCIONES Y ADVERTENCIAS ANTES DE REALIZAR CUALQUIER TRABAJO EN ESTA BOMBA.

MANTENGA TODAS LAS CALCOMANÍAS DE SEGURIDAD.

ADVERTENCIA: Todo el trabajo eléctrico debe ser realizado por un técnico calificado. Siempre siga el Código Eléctrico de EE.UU. (NEC) o el Código Eléctrico Canadiense, además de todos los códigos locales, estatales y provinciales. Las preguntas acerca del código deben ser dirigidas al inspector eléctrico local. Si se hace caso omiso a los códigos eléctricos y normas de seguridad de OSHA, se pueden producir lesiones personales o daños al equipo. Si se hace caso omiso a las instrucciones de instalación del fabricante, se puede producir electrochoque, peligro de incendio, lesiones personales o muerte, daños al equipo, rendimiento insatisfactorio y podría anularse la garantía del fabricante.

Las bombas están aprobadas para usarse en agua y aguas negras como localidades peligrosas de Clase 1, Grupos C y D. Tal como se define en el manual del Código Eléctrico de los Estados Unidos, una localidad de Clase 1 es aquella en que podrían estar presentes gases o vapores inflamables en cantidades suficientes para producir mezclas explosivas o encendibles. Consulte el manual del Código Eléctrico de los Estados Unidos con respecto a las definiciones de los Grupos C y D.

ADVERTENCIA: Todas las aprobaciones de agencias aparecen en las placas de información específicas de las bombas y motores.

ADVERTENCIA: Todas las clasificaciones eléctricas aparecen en la placa de identificación del motor.

ADVERTENCIA: El usuario debe proporcionar un arrancador de motor apropiado (panel de control) con protección térmica (alta temperatura), protección contra la corriente excesiva y circuitos de detección de humedad. La protección contra la corriente excesiva debe incluir protección de disparo rápido Clase 10. Consulte el manual de instalación, además del Código Eléctrico de los Estados Unidos, el Código Eléctrico Canadiense y los códigos estatales, provinciales y/o otros códigos locales pertinentes.

Este motor está clasificado para servicio continuo cuando se sumerge completamente en líquido y para servicio de 15 minutos en aire cuando se opera a los caballos de fuerza indicados en la placa de identificación. No exceda los 15 minutos de la clasificación de servicio en aire. Consulte el manual del motor para obtener información adicional.

VERIFICACIONES PRELIMINARES A LA INSTALACIÓN

Abra todas las cajas e inspeccione el equipo para determinar si se ocasionaron daños durante el envío. Notifique cualquier daño a su proveedor o a la compañía de transporte de inmediato.

Verifique que todo el equipo sea de la tensión y fase correctas. La garantía no cubre daños causados por conectar bombas y controles a la fuente de energía incorrecta (fuente de tensión/fase).

Anote los números de modelos y números de serie de las bombas y del panel de control en la sección delantera de este manual de instrucciones para referencia futura. Entregue el manual al propietario o adjúntelo al panel de control una vez finalizada la instalación.

LEVANTAMIENTO DE LA BOMBA

NO LEVANTE NI TRANSPORTE NI CUELgue LA BOMBA DE LOS CABLES ELÉCTRICOS. EL DAÑO A LOS CABLES ELÉCTRICOS PUEDE PRODUCIR ELECTROCHOQUE, QUEMADURAS O AÚN LA MUERTE.

Levante la bomba con una cadena o un cable adecuadamente clasificado unido a los estirones de elevación en el motor. NO dañe los cables eléctricos o de los sensores al subir y bajar la unidad.

SISTEMA DE RIEL CORREDIZO

ADVERTENCIA: Los entornos peligrosos de Clase 1 requieren equipo de riel corredizo o equipo de desconexión sin chispas. Las piezas coincidentes construidas de latón o acero inoxidable impedirán la producción de chispas durante la instalación y retiro del equipo. Ofretamos los conjuntos de riel corredizo de latón o acero inoxidable A10-0B, A10-40B y A10-60B para usarse en estas localidades.

Los sistemas típicos de recolección de aguas negras probablemente son entornos peligrosos debido a los gases acumulados en el pozo sumidero. La mayoría de los códigos no permiten que el personal entre al pozo sumidero sin el equipo de protección y la capacitación correctas. Los sistemas de rieles corredizos...
están diseñados para facilitar el retiro de la bomba sin necesidad de entrar al pozo o perturbar la tubería.

Un sistema de riel corredizo opcional facilita la instalación y retiro de la bomba para inspección y mantenimiento. Los rieles corredizos eliminan esta preocupación de seguridad. Ahoran dinero y no hay necesidad de perturbar la tubería para retirar una bomba con fines de servicio.

AVISO: SIGA LAS INSTRUCCIONES DE INSTALACIÓN INCLUIDAS CON EL SISTEMA DE RIEL CORREDIZO.

La instalación del riel corredizo debe situar la bomba opuesta a la abertura para el líquido de entrada, evitando las áreas estancadas donde pudieran asentarse sólidos.

El piso de la fosa debe quedar plano debajo de la base del riel corredizo y tener suficiente capacidad de carga para soportar el peso completo del riel, la tubería de descarga y la bomba. Consulte los dibujos de instalaciones típicas.

TUBERÍAS

La tubería de descarga no debe ser más pequeña que el diámetro de descarga de la bomba y debe mantenerse lo más corta posible, evitando los accesorios innecesarios para reducir al mínimo las pérdidas por fricción.

Instale una válvula de retención de tamaño adecuado que corresponda con la capacidad de manejo de sólidos de la bomba para evitar el contraflujo de fluido. El contraflujo puede hacer que la bomba “gire” en dirección inversa, produciendo un desgaste prematuro del sello y/o del cojinetes. Si la bomba gira en sentido inverso al arrancar, el aumento de torsión puede dañar el motor y/o el eje del motor de la bomba y algunas bombas monofásicas hasta podrían funcionar en sentido inverso.

Instale una válvula de compuerta de tamaño adecuado **DESPUÉS** de la válvula de retención para facilitar el mantenimiento de la bomba, las tuberías y la válvula de retención.

Importante – antes de instalar la bomba: Perfore un orificio de alivio de 3/8 pulg. (4.8 mm) en la tubería de descarga. Debe situarse dentro del pozo, a 2 pulg. (51 mm) sobre la descarga de la bomba, pero debajo de la válvula de retención. El orificio de alivio permite el escape de aire de la carcasa. Al permitir que entre líquido a la carcasa se asegura que la bomba pueda arrancar cuando el nivel de líquido aumente. A menos que se proporcione un orificio de alivio, una bomba de toma inferior podría “obstruirse con aire” y no bombear agua, a pesar de que el impulsor gire.

Todas las tuberías deben estar apoyadas correctamente, de modo que no se apliquen esfuerzos o cargas de las tuberías a la bomba.

La cubierta de acceso a la fosa debe ser de tamaño suficiente para permitir realizar el servicio de inspección, mantenimiento y levantamiento con grúa o montacargas.

-paneles de control y cableado de la bomba

PELIGRO Características obligatorias del panel de control: Debido al entorno peligroso y a la aprobación Clase 1 del equipo, las bombas e interruptores de flotador requieren circuitos especiales en el panel de control para una operación segura y confiable y para cumplir con el código. Se requieren las siguientes opciones de paneles para asegurar que se mantenga la garantía y el tipo de aprobación.

PELIGRO Relés intrínsecamente seguros: Las bombas Clase 1 a prueba de explosión normalmente se utilizan en áreas donde existe peligro debido a gases o fluidos potencialmente explosivos. Es importante que todos los dispositivos eléctricos en el pozo sumidero de Clase 1 sean seguros en ese entorno. Si se utilizan interruptores de flotador, debe utilizar “relés intrínsecamente seguros” para accionar los interruptores de flotador de control. Estos relés funcionan con tensión y amperaje muy bajos para eliminar el peligro de una chispa en el pozo sumidero en el caso que un cable de alimentación resulte dañado o cortado. La mayoría de los proveedores de paneles ofrecen los relés intrínsecamente seguros como opción de panel. El cableado del sensor intrínsecamente seguro debe estar separado de otro cableado de entrada en tubo-conductos o canales de cableado independientes. Se ofrecen otros sistemas de control de nivel en el mercado y pueden ser aplicables para este tipo de ambiente; consulte con el fabricante del control con respecto a datos específicos.

AVISO: Sistema de detección de humedad: Las bombas requieren un circuito de detección de humedad, denominado también “circuito de falla del sello”, incorporado al panel de control para un funcionamiento correcto y para mantener la aprobación de Clase 1. El circuito en el panel de control va conectado a las sondas de detección de humedad del motor, conductores de control W1 y W2, e indica una falla del sello exterior. CentriPro™, ITT Industries Inc. ofrece controles compatibles a través de su distribuidor, y también Charles Warrick Co. en Royal Oaks, MI. Si no se proporciona un circuito de falla de sello para las sondas de detección de humedad, se anulará la garantía y la aprobación del código. Consulte la sección del “Sistema de detección de humedad” en el manual del motor incluido con la bomba.

ADVERTENCIA Sistema de protección térmica (de alta temperatura): La bomba contiene un “sistema de protección térmica” que debe conectarse en serie con la bobina de retención del arrancador magnético en el panel de control. Los conductores de control P1 y P2 se utilizan para esta conexión. Si este sistema no se conecta o no se utiliza correctamente, se anula la garantía del motor y la aprobación de la agencia. Consulte la sección del “Sistema de detección térmica” en el manual del motor incluido con la bomba.

ADVERTENCIA Protección contra la sobrecarga (corriente excesiva): Debe proporcionarse protección contra sobrecarga de Clase 10, de disparo rápido, tanto en los controles trifásicos como en los monofásicos. El objetivo de la protección contra la sobrecarga es proteger contra la corriente excesiva, mientras que la el circuito de protección térmica protege contra el exceso de temperatura. La protección contra la sobrecarga puede lograrse usando sobrecargas de estado sólido Clase 10 ajustables, tal como se utiliza en el arrancador Furnas ESP100 Clase 14 o en las sobrecargas bimetálicas de “calentador” de compensación ambiental.
CABLEADO Y CONEXIÓN A TIERRA

Aviso importante: Lea las instrucciones de seguridad antes de proseguir con el cableado.

Use únicamente alambre trenzado de cobre para la bomba/motor y la conexión a tierra. El alambre de conexión a tierra debe ser al menos del mismo tamaño que los alambres de la fuente de alimentación. Los alambres deben codificarse con colores para facilitar el mantenimiento y la identificación y resolución de problemas.

Instale los cables y la conexión a tierra de acuerdo con el Código Eléctrico de EE.UU. (NEC) o el Código Eléctrico Canadiense, además de los códigos locales, estatales y provinciales.

Instale un desconectador de todos los circuitos donde el código lo requiera.

Desconecte y bloquee la corriente eléctrica antes de instalar o dar servicio.

La tensión y fase de la fuente de alimentación deben corresponder con todos los requerimientos del equipo. La tensión o fase incorrecta puede producir incendio, daño al motor o a los controles y anula la garantía. Todas las clasificaciones eléctricas aparecen en la placa de identificación del motor.

Todos los empalmes debe ser impermeables. Si utiliza juegos de empalme, siga las instrucciones del fabricante.

Selecione la caja de conexiones NEMA del tipo y grado correctos para la aplicación y ubicación. La caja de conexiones debe garantizar conexiones de cableado seguras y secas.

Selle todos los controles de los gases presentes que pudiesen dañar los componentes eléctricos.

La falla de conectar a tierra permanentemente la bomba, el motor y los controles, antes de conectar la corriente eléctrica, puede causar electrochoque, quemaduras o la muerte.

Selección y cableado de los interruptores y paneles de control de la bomba

Correspondencia del equipo y la fuente de alimentación:

Importante: Siempre verifique que las clasificaciones de corriente, tensión, fase y potencia en la placa de identificación de la bomba correspondan con las del panel de control y la fuente de alimentación. Cualquier problema o preguntas con respecto al control de otras marcas debe dirigirse a ese proveedor o al fabricante del control. Nuestro personal técnico no tiene diagramas esquemáticos técnicos o información de identificación y resolución de problemas de los controles de otras compañías.

Diagramas de cableado del panel:

Los paneles de control se envían con instrucciones y diagramas de cableado. Utilice dichas instrucciones en conjunto con este manual de instrucciones (IOM). La instalación eléctrica debe ser realizada por técnicos calificados únicamente.

Alarmas:

Recomendamos la instalación de una alarma en todas las bombas para aguas residuales. Muchos paneles de control estándar vienen equipados con circuitos de alarma. Si no se usa un panel de control, se ofrece una alarma por alto nivel de líquido independiente. La alarma alerta al propietario acerca de una situación de alto nivel de líquido en el sistema, de manera que pueda comunicarse con el personal de servicio apropiado para que investigue la situación.

Características opcionales del panel:

Flotador de sumersión garantizada de la bomba: Muchos ingenieros especifican un flotador de APAGADO redundante, también llamado Circuito de sumersión garantizada de la bomba. Éste proporciona un segundo flotador de APAGADO como protección contra la falla o atascamiento del flotador de “APAGADO”, evitando que la(s) bomba(s) funcione(n) sin líquido.

Interruptores de flotador

Recomendamos utilizar un interruptor de flotador de mercurio, de sellado hermético, de ángulo restringido, tal como el Modelo número A2K23(W) o equivalente en entornos peligrosos de Clase 1. El modelo A2K23(W) puede ordenarse con cables más largos cambiando el cuarto dígito en el número; todos los largos son aceptables. Están diseñados para usarse con los relés intrínsecamente seguros.

Flotador de APAGADO: Debe situarse en o sobre el extremo superior de la cúpula del motor/bomba. Esto asegurará el enfriamiento apropiado del motor y optimizará la vida útil de la bomba. La bomba debe estar totalmente sumergida cuando funcione. El sello exterior (inferior) del eje debe estar en líquido cuando se opera el motor, ya sea que el motor esté sumergido o en aire. Si la bomba se hace funcionar en seco, esto afectará la vida útil del sello. Excepción: ¡Se permite arrancar brevemente o en marcha lenta el motor durante unos segundos para verificar la rotación del impulsor! Ver la sección de “Aplicación” en el manual del motor.

Flotador de sumersión garantizada de la bomba: Cuando se utilice, debe ser el flotador más inferior. Sítúelo unas cuantas pulgadas debajo del otro flotador de APAGADO.

Flotador(es) de ENCENDIDO: Debe situarse suficientemente más arriba del flotador de APAGADO más alto para permitir que la(s) bomba(s) funcione(n) en un ciclo de 2 minutos.

Flotador de alarma: Colóquelo sobre el (los) flotador(es) de ENCENDIDO y debajo de la entrada del estanque.

Consulte la Tabla del panel e interruptores de flotador.

Instalación

Conecte la(s) bomba(s) a los adaptadores de riel corredero o a la tubería de descarga.

Las bases del riel corredero deben anclarse al piso del pozo.

Todas las conexiones deben realizarse de acuerdo con el manual del motor, los diagramas de cableado del panel de control y el código eléctrico de EE.UU., el código canadiense y los códigos estatales, provinciales y/o locales.
Éste es un buen momento para verificar la rotación apropiada de los motores/impulsores.

VERIFICACIÓN DE LA ROTACIÓN

Siempre verifique la rotación correcta. La rotación correcta se indica en la carcasa de la bomba. Tanto los motores trifásicos como los monofásicos en esta serie son reversibles. Se permite arrancar brevemente o en marcha lenta el motor durante unos segundos para verificar la rotación del impulsor. Es más fácil verificar la rotación antes de instalar la bomba.

Las instrucciones para cambiar la rotación se presentan en el manual del motor.

Baje la(s) bomba(s) al pozo sumidero.

Inspeccione para verificar que los flotadores funcionen libremente y que no hagan contacto con la tubería.

AVISO: NO CAMBIE LOS CONDUCTORES PRINCIPALES DE SUMINISTRO ELÉCTRICO CONECTADOS A UN PANEL TRIFÁSICO; ESTO INVERTIRÁ LA ROTACIÓN EN TODO LOS MOTORES TRIFÁSICOS CONECTADOS AL PANEL.

AVISO: LA TORSIÓN DE ARRANQUE DEL MOTOR, EL “CONTRAGOLPE”, HARÁ QUE EL MOTOR DE DESPLAZAMIENTO SE DETenga EN DIRECCIÓN OPUESTA A LA DIRECCIÓN DE ROTACIÓN. ASEGUIrSE DE QUE EL CONJUNTO DE LA BOMBA ESTÉ BIEN SUJETO. NO COLOQUE LAS MANOS EN LA SUCCIÓN DE LA BOMBA MIENTRAS VERIFICA LA ROTACIÓN DEL MOTOR. EL HACERLO PRODUCIRÁ GRAVES LESIONES PERSONALES.

OPERACIÓN

Llene el pozo sumidero con agua limpia.

Coloque el (los) interruptor(es) del panel de control en la posición automática y pruebe minuciosamente el funcionamiento de los flotadores de ENCENDIDO, APAGADO y alarma y, cuando se utilicen, de los flotadores de sumersión garantizada de la bomba.

Importante: Si no se proporciona un neutro desde la fuente de alimentación a un panel de control monofásico, el circuito de control del panel no operará. Es necesario el neutro para completar el circuito de control de 115 voltios.

Verifique la tensión y la corriente y anote los datos en la sección delantera de este manual para referencia futura. Compare las lecturas de amperaje con el amperaje máximo indicado en la placa de identificación de la bomba. Si es más alto que el amperaje de la placa de identificación, investigue la causa. Si la bomba se hace funcionar fuera de la curva; es decir, con demasiado poca carga o con tensión alta o baja, aumentará el amperaje. El motor funcionará con una frecuencia no mayor que el 5% y una tensión no mayor que el 10% por encima o por debajo de los valores indicados en la placa de identificación de la bomba. El rendimiento dentro de este rango no será necesariamente igual al rendimiento publicado a la frecuencia y tensión exactas indicadas en la placa de identificación. Corrija el problema antes de continuar. También es posible que la causa sea un desbalance trifásico. Consulte la sección acerca de Desbalance de potencia trifásica y siga las instrucciones indicadas.

Reposicione el circuito de alarma, coloque el (los) interruptor(es) de la bomba en posición automática y el interruptor de control en la posición de encendido. Ahora la unidad está lista para la operación automática.

Explique la operación de las bombas, controles y alarmas al usuario final. Entregue la documentación al propietario o déjela en un lugar seco y seguro en el panel de control.
COLOCACIÓN TÍPICA DE LOS INTERRUPTORES DE FLOTADOR
Las tablas muestran las cantidades requeridas de interruptores y la función de cada uno en un sistema típico.

Sistema simple:
Tres (3) flotadores para: Bomba APAGADA, bomba ENCENDIDA, alarma ACTIVADA/DESACTIVADA.
Cuatro (4) flotadores para: Sumersión garantizada de la bomba o segunda bomba APAGADA, bomba APAGADA, bomba ENCENDIDA, alarma ACTIVADA/DESACTIVADA.

Sistema doble:
Cuatro (4) flotadores para: Bombas APAGADAS, bomba principal ENCENDIDA, bomba secundaria ENCENDIDA, alarma ACTIVADA.
Cinco (5) flotadores para: Sumersión garantizada de la bomba o segunda(s) bomba(s) APAGADA(S), bomba principal ENCENDIDA, bomba secundaria ENCENDIDA, alarma ACTIVADA.
El (los) flotador(es) de APAGADO es el flotador más inferior y el flotador de alarma siempre será el flotador más superior.

DATOS DE INGENIERÍA
Los datos de ingeniería para modelos específicos pueden encontrarse en su catálogo y en nuestro sitio Web (dirección en la cubierta).
Los diagramas de cableado del panel de control se envían con los paneles de control. Utilice los dibujos del panel de control junto con los manuales de instrucciones de la bomba y del motor para completar el cableado.

<table>
<thead>
<tr>
<th>OPERACIÓN DE LA BOMBA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sumersión mínima</td>
</tr>
<tr>
<td>Servicio continuo</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temperatura máxima del fluido</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operación continua</td>
</tr>
</tbody>
</table>

Interruptor de flotador de acción simple
Instalación “típica”
Se recomienda un suministro trifásico completo incluyendo tres transformadores individuales o un transformador trifásico. Se pueden usar conexiones en estrella o en triángulo “abierto” empleando sólo dos transformadores, pero hay más posibilidades de que produzcan un rendimiento inadecuado, disparo por sobrecarga o falla prematura del motor debido al desbalance de corriente.

Mida la corriente en cada uno de los tres conductores del motor y calcule el desbalance de corriente en la forma que se explica abajo.

Si el desbalance de corriente es del 2% o menos, deje los conductores tal como están conectados. Si el desbalance de corriente es de más del 2%, hay que verificar las lecturas de corriente en cada derivación empleando cada una de las tres conexiones posibles. Enrolle los conductores del motor en el arrancador en la misma dirección para evitar una inversión del motor.

Para calcular el porcentaje de desbalance de corriente:
A. Sume los tres valores de corriente de línea.
B. Divida la suma por tres, con lo cual se obtiene la corriente promedio.
C. Seleccione el valor de corriente más alejado de la corriente promedio (ya sea alto o bajo).
D. Determine la diferencia entre este valor de corriente (más alejado del promedio) y el promedio.
E. Divida la diferencia por el promedio. Multiplique el resultado por 100 para determinar el porcentaje de desbalance.

El desbalance de corriente no debe exceder el 5% con la carga del factor de servicio o el 10% con la carga de entrada nominal. Si el desbalance no puede corregirse enrollando los conductores, la causa del desbalance debe determinarse y corregirse. Si, en las tres conexiones posibles, la derivación más alejada del promedio está en el mismo conductor de potencia, entonces la mayoría del desbalance proviene de la fuente de potencia.

Contacte a la compañía de electricidad local para solucionar el desbalance.

<table>
<thead>
<tr>
<th>Conexión 1</th>
<th>Conexión 2</th>
<th>Conexión 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminales del arrancador</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>L2</td>
<td>L3</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>Conductores del motor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td>T1</td>
<td>T2</td>
</tr>
<tr>
<td>T2</td>
<td>T3</td>
<td>T1</td>
</tr>
<tr>
<td>T1</td>
<td>T2</td>
<td>T3</td>
</tr>
</tbody>
</table>

Ejemplo:

\[
\begin{align*}
T3 &= 51\,\text{amperios} \\
T1 &= 46\,\text{amperios} \\
T2 &= 53\,\text{amperios} \\
\text{Total} &= 150\,\text{amperios} \\
\div 3 &= 50\,\text{amperios} \\
- 46 &= 4\,\text{amperios} \\
4 + 50 &= .08\,\text{or}\,8\% \\
\end{align*}
\]

LECTURAS DE RESISTENCIA DEL AISLAMIENTO

Valores normales en ohmios y megaohmios entre todos los conductores y tierra

<table>
<thead>
<tr>
<th>Condición del motor y los conductores</th>
<th>Valor en ohmios</th>
<th>Valor en Megaohmios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Un motor nuevo (sin cable de bajada).</td>
<td>20,000,000 (o más)</td>
<td>20 (o más)</td>
</tr>
<tr>
<td>Un motor usado que puede reinstalarse en el pozo.</td>
<td>10,000,000 (o más)</td>
<td>10 (o más)</td>
</tr>
<tr>
<td>Motor en el pozo. Las lecturas son para el cable de bajada más el motor.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor nuevo.</td>
<td>2,000,000 (o más)</td>
<td>2 (o más)</td>
</tr>
<tr>
<td>El motor está en buenas condiciones.</td>
<td>500,000 - 2,000,000</td>
<td>.5 - 2</td>
</tr>
<tr>
<td>Daño de aislamiento, localícelo y repárelo.</td>
<td>Menos de 500,000</td>
<td>Menos de 0.5</td>
</tr>
</tbody>
</table>

La resistencia del aislamiento varía muy poco con la clasificación. Los motores de todas las clasificaciones de potencia, tensión y fase tienen valores similares de resistencia de aislamiento.

Los valores de resistencia de aislamiento anteriores están basados en lecturas obtenidas con un megaohmímetro con salida de 500 V CC. Las lecturas pueden variar utilizando un ohmímetro de tensión más baja; consulte con la fábrica si tiene dudas acerca de las lecturas.
Identificación y Resolución de Problemas

Advertencia: La falla de desconectar y bloquear la corriente eléctrica antes de intentar cualquier servicio, puede causar electrochoque, quemaduras o la muerte.

<table>
<thead>
<tr>
<th>Síntoma</th>
<th>Causa Probable</th>
<th>Acción recomendada</th>
</tr>
</thead>
<tbody>
<tr>
<td>El motor no está funcionando</td>
<td>Se disparó el protector térmico del motor</td>
<td>Deje que se enfríe el motor. Asegure la sumersión mínima de la bomba. Limpie los residuos de la carcasa y el impulsor.</td>
</tr>
<tr>
<td>NOTA: Si el cortacircuitos se “ABRE” repetidamente, NO lo reposicione. Llame a un electricista calificado.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Operación manual</td>
<td>Cortacircuitos abierto o fusible quemado. Impulsor de la bomba rozando o atascado.</td>
<td>Determine la causa, llame a un electricista calificado. Determine el consumo de corriente del motor. Si es dos veces más alto que el indicado en la placa de identificación de la bomba, el impulsor está trabado, los cojinetes del motor o el eje está dañado. Limpie los residuos de la carcasa y el impulsor, consulte con el agente.</td>
</tr>
<tr>
<td></td>
<td>El cable de alimentación está dañado. Conexiones eléctricas inadecuadas en el panel de control.</td>
<td></td>
</tr>
<tr>
<td>b) Operación automática</td>
<td>No hay alambre neutro conectado al panel de control. Conexiones eléctricas inadecuadas en el panel de control.</td>
<td>La resistencia entre los conductores de alimentación y tierra debe indicar infinito. Si alguna lectura es incorrecta, llame a un electricista calificado.</td>
</tr>
<tr>
<td>NOTA: Inspeccione la bomba en modo manual primero para confirmar el funcionamiento. Si la bomba funciona, el control automático o el cableado está defectuoso. Si la bomba no funciona, vea arriba.</td>
<td>Interruptor de nivel de líquido defectuoso para activar los controles. Nivel de líquido insuficiente para activar los controles. Cordones de los sensores de nivel de líquido enredados.</td>
<td>Con el interruptor desconectado, verifique la continuidad mientras activa el interruptor de nivel de líquido. Reemplace el interruptor, según se requiera. Deje que el nivel de líquido aumente de 3 a 4 pulgadas (76 mm – 101 mm) sobre el nivel de activación. Desenrede los cordones y asegure el funcionamiento libre.</td>
</tr>
<tr>
<td>La bomba no se apaga</td>
<td>Cordones de los sensores de nivel de líquido enredados. La bomba está atascada con aire.</td>
<td>Desenrede los cordones y asegure el funcionamiento libre. Apague la bomba durante aproximadamente un minuto y arránquela nuevamente. Repita hasta que se despeje la obstrucción de aire. Si la obstrucción de aire persiste en un sistema con tubo con válvula de retención, puede perforarse un agujero de 3/16 pulg. (4.8 mm) en el tubo de descarga aproximadamente a 2 pulgadas (51 mm) de la conexión de descarga. Podría requerirse una bomba más grande.</td>
</tr>
<tr>
<td>El flujo de líquido entrante coincide con la capacidad de descarga de la bomba.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>La válvula de retención está instalada invertida, está obstruida o atascada en posición cerrada. Carga excesiva del sistema. Entrada a la bomba obstruida. Tensión incorrecta, o conectada incorrectamente. La bomba está atascada con aire. El impulsor está gastado o dañado. Los controles de nivel de líquido están defectuosos o instalados incorrectamente.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>La bomba cicla constantemente</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nota: Si el cortacircuitos se “ABRE” repetidamente, NO lo reposicione. Llame a un electricista calificado.

Nota: Inspeccione la bomba en modo manual primero para confirmar el funcionamiento. Si la bomba funciona, el control automático o el cableado está defectuoso. Si la bomba no funciona, vea arriba.

Advertencia: Tensión peligrosa.
Instalaciones típicas de bombas de efluente, para alcantarillado y de extracción de agua
GARANTÍA LIMITADA DE GOULDS WATER TECHNOLOGY

Esta garantía es aplicable a todas las bombas para sistemas de agua fabricadas por Goulds Water Technology.

Toda parte o partes que resulten defectuosas dentro del período de garantía serán reemplazadas sin cargo para el comerciante durante dicho período de garantía. Tal período de garantía se extiende por doce (12) meses a partir de la fecha de instalación, o dieciocho (18) meses a partir de la fecha de fabricación, cualquiera se cumpla primero.

Todo comerciante que considere que existe lugar a un reclamo de garantía deberá ponerse en contacto con el distribuidor autorizado de Goulds Water Technology del cual adquiriera la bomba, y ofrecer información detallada con respecto al reclamo. El distribuidor está autorizado a liquidar todos los reclamos por garantía a través del Departamento de Servicios a Clientes de Goulds Water Technology.

La presente garantía excluye:

(a) La mano de obra, el transporte y los costos relacionados en los que incurra el comerciante;
(b) los costos de reinstalación del equipo reparado;
(c) los costos de reinstalación del equipo reemplazado;
(d) daños emergentes de cualquier naturaleza; y
(e) el reembolso de cualquier pérdida causada por la interrupción del servicio.

A los fines de esta garantía, los términos “Distribuidor”, “Comerciante” y “Cliente” se definen como sigue:

(1) “Distribuidor” es aquel individuo, sociedad, corporación, asociación u otra entidad jurídica que opera entre Goulds Water Technology y el comerciante para la compra, consignación o contratos de venta de las bombas en cuestión.

(2) “Comerciante” es todo individuo, sociedad, corporación, asociación u otra entidad jurídica que realiza negocios de venta o alquiler-venta (leasing) de bombas a clientes.

(3) “Cliente” es toda entidad que compra o que adquiere bajo la modalidad de leasing las bombas en cuestión de un comerciante. El término “cliente” puede significar un individuo, una sociedad, una corporación, una sociedad de responsabilidad limitada, una asociación o cualquier otra entidad jurídica con actividades en cualquier tipo de negocios.

LA PRESENTE GARANTÍA SE EXTIENDE AL COMERCIANTE ÚNICAMENTE
Pompes à eaux usées antidéflagrantes
pour endroits dangereux de classe 1, groupes C et D

DIRECTIVES D’INSTALLATION, D’UTILISATION ET D’ENTRETIEN
Informations pour le propriétaire

Numéro de modèle de la pompe : ______________

Numéro de série de la pompe : ______________

N° de modèle du tableau de commande : __________

Détaillant : ________________________________

N° de téléphone du détaillant : ______________

Date d’achat : _______ d’installation : _________

Courant mesuré au démarrage :

<table>
<thead>
<tr>
<th>1 Ø</th>
<th>3 Ø</th>
<th>L1-2</th>
<th>L2-3</th>
<th>L3-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A :</td>
<td>A :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V :</td>
<td>V :</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1 Ø</th>
<th>3 Ø</th>
<th>L1-2</th>
<th>L2-3</th>
<th>L3-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A :</td>
<td>A :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V :</td>
<td>V :</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Informations pour le propriétaire
CONSIGNES DE SÉCURITÉ

AFIN DE PRÉVENIR LES BLESSURES GRAVES OU MORTELLES ET LES DOMMAGES MATÉRIELS IMPORTANTS, LIRE ET SUIVRE TOUTES LES CONSIGNES DE SÉCURITÉ FIGURANT DANS LE MANUEL ET SUR LA POMPE.

LE PRÉSENT MANUEL A POUR BUT DE FACILITEL L’INSTALLATION ET L’UTILISATION DE LA POMPE ET DOIT ÊTRE CONSERVÉ PRÈS DE CELLE-CI.

Le symbole ci-contre est un SYMBOLE DE SÉCURITÉ employé pour signaler les mots-indicateurs dont on trouvera la description ci-dessous. Sa présence sert à attirer l’attention afin d’éviter les blessures et les dommages matériels.

DANGER
Prévient des risques qui VONT causer des blessures graves, la mort ou des dommages matériels importants.

AVERTISSEMENT
Prévient des risques qui PEUVENT causer des blessures graves, la mort ou des dommages matériels importants.

ATTENTION
Prévient des risques qui PEUVENT causer des blessures ou des dommages matériels.

AVIS : SERT À ÉNONCER LES DIRECTIVES SPÉCIALES DE GRANDE IMPORTANCE QUE L’ON DOIT SUIVRE.

LIRE SOINGNEUSEMENT CHAQUE DIRECTIVE ET AVERTISSEMENT AVANT D’EFFETUER TOUT TRAVAIL SUR LA POMPE.

N’ENLEVER AUCUNE DÉCALCOMANIE DE SÉCURITÉ.

AVERTISSEMENT
L’installation électrique doit être entièrement effectuée par un technicien qualifié. Il faut toujours suivre les prescriptions du code provincial ou national de l’électricité et les règlements locaux. Adresser toute question relative au code à un inspecteur en électricité.

Le non-respect du code et des politiques de santé et de sécurité au travail peut entraîner des blessures et des dommages matériels. L’inobservation des directives d’installation fournies par le fabricant peut se traduire par un choc électrique, un incendie, des blessures ou la mort, ainsi que par des dommages matériels, des performances non satisfaisantes et l’annulation de la garantie du fabricant.

AVERTISSEMENT
Les pompes sont cataloguées comme pompes à eau et à eaux d’égout pour endroits dangereux de classe 1, groupes C et D. Aux termes du manuel du NEC (code de l’électricité américain), un endroit dangereux de classe 1 est un endroit où des vapeurs et des gaz inflammables sont ou peuvent être présents en quantité suffisante pour produire un mélange inflammable ou explosif. On trouvera les définitions relatives aux groupes C et D dans le manuel du NEC.

AVERTISSEMENT
Le nom des organismes de normalisation pertinents figure sur la plaque signalétique de la pompe et du moteur.

AVIS
Consultez la plaque signalétique du moteur pour les valeurs de courant nominales.

AVERTISSEMENT
L’utilisateur doit fournir un démarreur (tableau de commande) de moteur approprié à circuits de détection de l’humidité et de protection contre les hautes températures et la surintensité. La protection contre la surintensité doit être du type rapide de classe 10. Consulter le manuel d’installation du moteur ainsi que les prescriptions du code provincial ou national de l’électricité et les règlements locaux applicables.

AVERTISSEMENT
Le moteur est conçu pour un service continu en immersion totale et pour un service de 15 minutes dans l’air, à la puissance (hp) nominale inscrite sur la plaque signalétique. Ne pas le faire tourner durant plus de 15 min hors de l’eau. Pour plus de détails, voir le manuel d’installation du moteur.

VÉRIFICATIONS AVANT INSTALLATION
Ouvrir tous les cartons et vérifier si le matériel est endommagé. Signaler immédiatement tout dommage au fournisseur ou au transporteur.

Vérifier si le nombre de phases et la tension d’alimentation conviennent à tout l’équipement. La garantie ne couvre pas les dommages dus au branchement de la pompe et du tableau de commande à une source de courant dont la tension ou le nombre de phases sont inappropriés.

Inscrire à titre documentaire les numéros de modèle et de série de la pompe ainsi que le numéro de modèle du tableau de commande dans les Informations pour le propriétaire. Une fois l’installation achevée, remettre le manuel au propriétaire ou l’attacher au tableau de commande.

LEVAGE DE LA POMPE

AVERTISSEMENT
NE PAS LEVER, TRANSPORTER NI SUSPENDRE LA POMPE PAR LE CÂBLE D’ALIMENTATION : L’ENDOMMAGEMENT DU CÂBLE POURRAIT CAUSER UN CHOC ÉLECTRIQUE, DES BRÛLURES OU LA MORT.

Lever la pompe avec une chaîne ou un câble en juste proportion classée attaché aux crochets de levage. Ne pas lever, transporter ni suspendre la pompe par le câble d’alimentation.

SYSTÈME À RAIL DE GUIDAGE

AVERTISSEMENT

Tout système collecteur d’eaux usées type peut être un endroit dangereux en raison des gaz s’accumulant dans la fosse humide. La plupart des codes n’autorisent pas le personnel à entrer dans une fosse humide sans la formation ni l’équipement protecteur appropriés. Le rail de guidage est conçu pour faciliter la mise en place, le retrait, l’inspection et l’entretien de la pompe en évitant la disjonction de la tuyauterie.
Le rail de guidage permet donc d’économiser du temps et prévient les risques d’explosion.

AVIS : SUIVRE LES DIRECTIVES FOURNIES AVEC LE SYSTÈME À RAIL DE GUIDAGE.

Le rail devrait être placé de façon à ce que la pompe soit face à l’orifice d’arrivée de l’influuent pour empêcher la formation de zones de stagnation et, ainsi, de dépôts.

Le fond du puits collecteur doit être plat sous le pied d’assise du rail de guidage et être suffisamment résistant pour supporter le poids du rail, de la pompe et de la tuyauterie. Voir les illustrations des Installations types.

TUYAUTERIE

Afin de réduire les pertes de charge (par frottement) au minimum, la tuyauterie de refoulement devrait être aussi courte que possible et dépourvue d’accessoires et de raccords superflus. Son diamètre devrait être au moins égal à celui de l’orifice de refoulement de la pompe.

Prévenir le retour du liquide : poser sur le tuyau de refoulement un clapet de non-retour de calibre convenant à la grosseur des solides que la pompe peut laisser passer. Le retour du liquide peut faire tourner la pompe en sens inverse, provoquant ainsi l’usure prématurée des garnitures mécaniques et des roulements. S’il y a « rotation en sens inverse » au moment du démarrage, le couple accru produit peut abîmer le moteur ou l’arbre de pompe, ou les deux, et certaines pompes monophasées peuvent même continuer à tourner en sens inverse.

Poser EN AVAL (après) du clapet de non-retour un robinet-vanne de calibre approprié pour permettre l’entretien de la pompe, de la tuyauterie et du clapet.

Important : avant d’installer la pompe et afin de prévenir la formation de poches d’air dans celle-ci, percer un trou-purgeur d’air de 4,8 mm (\(\frac{3}{16} \) po) dans le tuyau de refoulement, à environ 51 mm (2 po) au-dessus de l’orifice de refoulement de la pompe, mais avant le clapet de non-retour et à l’intérieur de la fosse humide. On permettra ainsi au liquide d’entrer dans la pompe par gravité, surtout si l’orifice d’aspiration est situé en dessous, et préviendra la formation de poches d’air qui empêcheraient le pompage du liquide même si la roue de la pompe tourne.

La tuyauterie doit être supportée correctement pour n’appliquer sur la pompe aucune charge pouvant la déformer.

Couvercles et trappes de visite doivent être assez grands pour permettre l’inspection et l’entretien de la pompe ainsi que l’emploi d’un dispositif de levage.

TABLEAUX DE COMMANDE POUR LA POMPE ET CÂBLAGE

Caractéristiques obligatoires du tableau de commande — les pompes et les contacteurs à flotteur servant dans un endroit dangereux de classe 1 requièrent l’emploi d’un circuit spécial dans le tableau de commande pour un fonctionnement fiable, sans risque et conforme au code. Les accessoires de tableau en option ci-dessous sont nécessaires pour maintenir la validité de la garantie et de l’enregistrement auprès des organismes de normalisation pertinents.

DANGER Relais à sécurité intrinsèque — les pompes antidéflagrantes de classe 1 sont normalement utilisées dans les endroits rendus dangereux par la présence de gaz ou de fluides aux propriétés explosives. Il importe que tout dispositif électrique employé dans une fosse humide de classe 1 ne présente aucun danger. Les contacteurs à flotteur doivent être alimentés par des relais à sécurité intrinsèque. La tension et l’intensité du courant traversant ces relais sont très faibles afin de prévenir la formation d’étincelles en cas d’endommagement du cordon du contacteur. Les relais à sécurité intrinsèque sont offerts en option par la plupart des fournisseurs de tableaux de commande. Les fils des relais en question doivent être séparés des autres fils et avoir leur propre conduit ou canalisation. Il existe d’autres systèmes de régulation du niveau qui pourraient servir en pareils endroits. Pour plus de détails, s’adresser au fabricant du tableau.

AVERTISSEMENT Système de détection de l’humidité — les pompes requièrent un circuit de détection de l’humidité, aussi appelé circuit de détection des défaillances de garniture, intégré au tableau de commande et visant le bon fonctionnement de la pompe et le maintien de la classe 1. Le circuit est relié aux capteurs d’humidité du moteur par les fils des bornes W1 et W2, et signale toute défaillance de la garniture externe (inférieure). Des dispositifs de commande compatibles de CentriPro™, ITT Industries Inc. sont offerts par le biais du distributeur et par la Charles Warrick Co., de Royal Oak, au Michigan. L’absence du circuit de détection de l’humidité annulera la garantie et l’enregistrement auprès des organismes de normalisation. Voir les explications sur le système de détection de l’humidité dans le manuel d’installation de la pompe.

AVERTISSEMENT Système de protection thermique (hautes températures) — la pompe possède un système de protection thermique intégré qui doit être branché en série à la bobine de maintien du démarreur magnétique du tableau de commande, aux bornes P1 et P2. On doit utiliser et brancher correctement ce circuit pour maintenir la validité de la garantie et l’enregistrement auprès des organismes de normalisation. Voir les explications sur le système de protection thermique dans le manuel d’installation de la pompe.

AVERTISSEMENT Protection contre la surcharge (su-rintensité) — les tableaux de commande monophasés et triphasés doivent être dotés d’une protection contre la surcharge rapide de classe 10. Il s’agit de protection contre les surintensités, non contre les haute températures décelées par le système de protection thermique. La protection contre la surcharge peut être assurée par des limitateurs de surcharge à circuit imprimé réglables de classe 10, comme ceux du démarreur Furnas ESP100 de classe 14, ou par des limitateurs de surcharge bimétalliques compensés en fonction des conditions ambiantes.

CÂBLAGE ET MISE À LA TERRE

Avis important : lire les Consignes de sécurité avant de procéder au câblage.

N’utiliser que du fil torsadé en cuivre pour la mise à la terre et l’alimentation du moteur. Le calibre du fil de terre doit être au moins égal à celui des fils d’alimentation du moteur, et les fils devraient tous être chromocodés pour faciliter l’entretien et le diagnostic des anomalies.
Poser le fil de terre et les autres fils suivant les prescriptions du code provincial ou national de l'électricité et les règlements locaux.

Installer un sectionneur tout conducteur si le code l'exige.

Verrouiller la source de courant en position ouverte avant de procéder à l'installation ou à l'entretien de la pompe.

Le nombre de phases et la tension d'alimentation doivent convenir à tout l'équipement. Un nombre de phases et une tension inappropriés annulent la garantie et peuvent causer un incendie et des dommages au moteur et au tableau de commande. Voir la plaque signalétique du moteur pour les valeurs de courant nominales.

Chaque jonction de fils doit être étanche. Si l'on emploie un nécessaire de jonction (« kit »), suivre les directives du fabricant.

AVERTISSEMENT
Choisir la boîte de jonction du type et de la classe NEMA convenant au type et au lieu d'utilisation. La boîte doit assurer une jonction de fils sûre et étanche.

AVERTISSEMENT
Étancher les commandes afin d'empêcher les gaz d'en détériorer les composants.

AVERTISSEMENT
Tension dangereuse
OMETTRE LA MISE À LA TERRE PERMANENTE DE LA POMPE, DU MOTEUR ET DES COMMANDES AVANT LE BRANCHEMENT À LA SOURCE DE COURANT PEUT CAUSER UN CHOC ÉLECTRIQUE, DES BRÛLURES OU LA MORT.

SÉLECTION ET CÂBLAGE DES CONTACTEURS ET DES TABLEAUX DE COMMANDE

CONFORMITÉ DE L'ÉQUIPEMENT ET DU COURANT D'ALIMENTATION
Important: on doit toujours s'assurer que les valeurs nominales inscrites sur la plaque signalétique (intensité, tension, puissance et nombre de phases) conviennent au tableau de commande et à la source de courant. Adresser toute question relative aux autres marques de tableau de commande au fournisseur ou au fabricant de ces marques. Notre personnel technique ne dispose pas des schémas ni des informations de dépannage des autres marques.

SCHÉMAS DE CÂBLAGE DES TABLEAUX DE COMMANDE
Des directives et des schémas de câblage sont fournis avec les tableaux de commande. Utiliser ces informations conjointement avec celles du présent manuel. L'installation électrique ne doit être effectuée que par des techniciens qualifiés.

DISPOSITIFS D'ALARME
Il est recommandé de poser un dispositif d'alarme dans toute installation à pompe(s) à eaux usées. De nombreux tableaux de commande standard en sont munis. S'il n'y a pas de tableau de commande, on peut employer un dispositif d'alarme niveau haut, autonome, qui se déclencherait si le liquide atteint un niveau trop élevé, avertissant ainsi le personnel d'entretien, qui apportera alors les correctifs appropriés.

ACCESSOIRE DE TABLEAU DE COMMANDE EN OPTION
Contacteur à flotteur de garantie d'immersion — bon nombre d'ingénieurs spécifient l'emploi d'un contacteur d'arrêt redondant, qui garantit l'immersion de la pompe en agissant comme second contacteur d'arrêt en cas de défaillance ou d'enchevêtrement du premier contacteur d'arrêt, empêchant ainsi la ou les pompes de fonctionner à sec.

CONTACTEURS À FLOTTEUR
Il est recommandé d'utiliser un contacteur à flotteur à mercure, étanche, à petit déplacement angulaire.

L'A2K23(W) ou un modèle équivalent pour endroits dangereux de classe 1 convient. On peut commander l'A2K23(W) avec un cordon plus long (toutes les longueurs sont acceptées) en en changeant le 4e caractère du numéro. Le contacteur est conçu pour les relais à sécurité intrinsèque.

Contacteur d'arrêt — il devrait être placé au niveau au-dessus du sommet du compartiment moteur de la pompe pour optimiser le refroidissement du moteur et la durée de la pompe. Celle-ci devrait être totalement immergée pendant son fonctionnement. La garniture externe de l'arbre doit être dans le liquide pendant que le moteur tourne, immergé ou non. Le fonctionnement à sec influe sur la durée de la garniture. Toutefois, il est permis de mettre la pompe en marche durant quelques secondes, puis de l’arrêter pour en vérifier le sens de rotation ! Voir les informations pertinentes dans le manuel d'installation du moteur.

Contacteur de garantie d'immersion — il devrait être le plus bas, c'est-à-dire quelques centimètres sous le niveau du contacteur d'arrêt.

Contacteur(s) de démarrage — le(s) placer aussi haut que possible au-dessus du contacteur d'arrêt pour permettre un cycle de fonctionnement de 2 min.

Contacteur d'alarme — le mettre plus haut que le(s) contacteur(s) de démarrage, mais plus bas que l'entrée de la cuve.

Voir la section Position type des contacteurs à flotteur.

INSTALLATION
Fixer à la ou aux pompes le raccord rapide pour le rail de guidage ou la tuyauterie de refoulement.

Le pied d'assise du rail devrait être assujetti au fond de la fosse humide par des boulons d’ancrage.

Effectuer le câblage selon le manuel d’installation du moteur, les schémas de câblage des tableaux de commande, les prescriptions du code provincial ou national de l’électricité et les règlements locaux.

À ce stade-ci, il est suggéré de vérifier le sens de rotation de l’arbre de moteur ou de la roue.
SENS DE ROTATION
On doit toujours vérifier si la pompe tourne dans le sens indiqué sur le corps de pompe, ce qui est plus facile à faire avant l’installation de la pompe. Les moteurs monophasés et triphasés de cette série peuvent tourner dans les deux sens. Il est donc permis de mettre la pompe en marche durant quelques secondes, puis de l’arrêter pour en vérifier le sens de rotation.

Voir le manuel d’installation du moteur pour les directives d’inversion du sens de rotation.

Descendre la ou les pompes dans la fosse humide.

S’assurer que les contacteurs à flotteur peuvent bouger librement, mais sans pouvoir atteindre la tuyauterie.

AVIS : NE PAS INTERVERTIR LES FILS DU PRIMAIRE DANS LES TABLEAUX DE COMMANDE DES POMPES TRIPHASÉES, SINON LE SENS DE ROTATION SERA INVERSÉ.

AVIS : AU DÉMARRAGE, LE COUPLE MOTEUR IMPRIME À LA POMPE UN MOUVEMENT DE TORSION DANS LE SENS OPPOSÉ AU SENS DE ROTATION. S’ASSURER QUE LA POMPE EST ASSUJETTIE CORRECTEMENT.

ÉVITER LES BLESSURES GRAVES : NE PAS S’INTRODUIRE LES DOIGTS DANS L’ORIFICE D’ASPIRATION DE LA POMPE DURANT LA VÉRIFICATION DU SENS DE ROTATION.

MISE EN MARCHE
Remplir d’eau la fosse humide.

Placer le commutateur du tableau de commande à *Auto* pour faire fonctionner la pompe automatiquement, puis vérifier minutieusement le fonctionnement des contacteurs de démarrage, d’arrêt, d’alarme et de garantie d’immersion (s’il y en a un). *Important* : omettre de brancher le fil neutre de la source de courant à tout tableau de commande monophasé empêchera le circuit de commande du tableau de fonctionner. Le neutre est nécessaire pour alimenter (115 V) le circuit de commande.

Mesurer l’intensité et la tension du courant au démarrage et les inscrire à titre documentaire dans les Informations pour le propriétaire. Comparer l’intensité mesurée à l’intensité maximale indiquée sur la plaque signalétique de la pompe. Si l’intensité mesurée est supérieure, en chercher la cause. L’utilisation de la pompe hors de sa courbe de performances, c.-à-d. à une hauteur de charge trop faible ou à une tension trop basse ou trop haute, augmentera l’intensité du courant. Le moteur fonctionnera correctement si sa fréquence et sa tension d’alimentation se situent dans les limites suivantes : fréquence nominale (voir plaque signalétique) ± 5 % et tension nominale ± 10 %. Les performances obtenues dans ces limites ne seront pas forcément identiques à celles de la courbe de performances correspondant à la fréquence et à la tension nominales inscrites sur la plaque signalétique. Apporter les correctifs nécessaires avant de continuer. Le déséquilibre du courant triphasé peut en outre altérer les performances. Si c’est le cas, suivre les directives de la section Déséquilibre du courant triphasé.

Réarmer le dispositif d’alarme, puis mettre la pompe en mode automatique (*Auto*) et le circuit de commande du tableau sous tension (interrupteur « *Control On-Off* » à *On*). Le système est maintenant prêt à fonctionner automatiquement.

Expliquer le fonctionnement de la pompe et des dispositifs de commande et d’alarme à l’utilisateur, puis lui laisser la documentation ou l’attacher au tableau de commande s’il est installé dans un endroit sec, fermé.
POSITION TYPE DES CONTACTEURS À FLOTTEUR
Cette section indique le nombre de contacteurs à flotteur requis et le rôle de chacun dans les systèmes types.

Système à pompe simple
Trois (3) contacteurs à flotteur : pompe hors fonction, pompe en fonction, alarme en fonction ou hors fonction.
Quatre (4) contacteurs à flotteur : immersion garantie de la pompe (2e contacteur d’arrêt), pompe hors fonction, pompe en fonction, alarme en fonction ou hors fonction.

Système à pompe double
Quatre (4) contacteurs à flotteur : pompes hors fonction, 1re pompe en fonction, 2e pompe en fonction, alarme en fonction.
Cinq (5) contacteurs à flotteur : immersion garantie des pompes ou 2e pompe hors fonction, pompes hors fonction, 1re pompe en fonction, 2e pompe en fonction, alarme en fonction.
Le ou les contacteurs d’arrêt occupent la position la plus basse, et le contacteur d’alarme, la plus haute.

DONNÉES TECHNIQUES
On trouvera les données techniques sur des modèles particuliers dans le catalogue et à l’adresse du site Web inscrite au bas de la première page.
Les schémas de câblage des tableaux de commande sont fournis avec ces derniers. S’en servir conjointement avec les directives du présent manuel pour effectuer le câblage.

<table>
<thead>
<tr>
<th>SERVICE DE LA POMPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauteur d’immersion minimale</td>
</tr>
<tr>
<td>Service continu</td>
</tr>
</tbody>
</table>

Installation type à contacteur à flotteur à simple effet

NIVEAU DE DÉMARRAGE : 20,3 cm (8 po)
15,3 cm (6 po)
15,3 cm (6 po)
DÉSÉQUILIBRE DU COURANT TRIPHASÉ

Un circuit d’alimentation électrique entièrement triphasé est recommandé. Il peut être constitué de trois transformateurs distincts ou d’un transformateur triphasé. On peut aussi utiliser deux transformateurs montés en étoile ou en triangle « ouverts », mais il est possible qu’un tel montage crée un déséquilibre de courant se traduisant par des performances médiocres, le déclenchement intempestif du limiteur de surcharge et la défaillance prématu èrée du moteur.

Vérifier l’intensité du courant sur chacun des trois fils de moteur, puis calculer le déséquilibre du courant.

Si le déséquilibre est de 2 % ou moins, ne pas changer la connexion des fils.

S’il dépasse 2 %, on devrait vérifier l’intensité du courant sur chaque conducteur, dans les trois montages possibles ci-dessous. Afin de maintenir le sens de rotation du moteur, suivre l’ordre numérique indiqué dans chaque montage pour la connexion des fils de moteur.

Pour calculer le pourcentage de déséquilibre du courant :

A. Faire l’addition des trois intensités de courant de ligne mesurées.
B. Diviser le total par 3 pour obtenir l’intensité moyenne.
C. Prendre l’écart d’intensité le plus grand par rapport à la moyenne.
D. Soustraire cet écart de la moyenne.
E. Diviser la différence par la moyenne, puis multiplier le résultat par 100 pour obtenir le pourcentage de déséquilibre.

Le déséquilibre de courant ne devrait pas excéder 5 % en charge avec facteur de surcharge et 10 % en charge d’entrée nominale. Si l’on ne peut éliminer le déséquilibre en connectant les fils de moteur dans l’ordre numérique indiqué, on doit en trouver la cause et la rectifier. Si, dans les trois montages, l’écart d’intensité le plus grand par rapport à la moyenne est toujours sur le même conducteur, la cause du déséquilibre vient surtout de la source de courant.

On s’adressera alors à la société d’électricité pour rectifier le déséquilibre de courant.

<table>
<thead>
<tr>
<th>1er montage</th>
<th>2e montage</th>
<th>3e montage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bornes de démarreur</td>
<td>L1 L2 L3</td>
<td>L1 L2 L3</td>
</tr>
<tr>
<td>Fils de moteur</td>
<td>T3 T1 T2</td>
<td>T2 T3 T1</td>
</tr>
</tbody>
</table>

Exemples :

T3 = 51 A T2 = 50 A T1 = 50 A
T1 = 46 A T3 = 48 A T2 = 49 A
T2 = 53 A T1 = 52 A T3 = 51 A
Total = 150 A Total = 150 A Total = 150 A
+ 3 = 50 A + 3 = 50 A + 3 = 50 A
- 46 A = 4 A - 48 A = 2 A - 49 A = 1 A
4 ÷ 50 = 0,08 ou 8 % 2 ÷ 50 = 0,04 ou 4 % 1 ÷ 50 = 0,02 ou 2 %

VALEURS DE RÉSISTANCE D’ISOLEMENT DU MOTEUR

Valeurs normalement mesurées en ohms et en mégohms entre chaque fil et le fil de terre

<table>
<thead>
<tr>
<th>État du moteur et des fils</th>
<th>Valeurs en ohms</th>
<th>Valeurs en mégohms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moteur neuf sans câble d’alimentation</td>
<td>20 000 000 (et plus)</td>
<td>20 (et plus)</td>
</tr>
<tr>
<td>Moteur usagé réutilisable en fosse</td>
<td>10 000 000 (et plus)</td>
<td>10 (et plus)</td>
</tr>
</tbody>
</table>

| Moteur en fosse – valeurs mesurées : câble d’alimentation plus moteur |
|---------------------------|-----------------|--------------------|
| Moteur neuf | 2 000 000 (et plus) | 2 (et plus) |
| Moteur en bon état | 500 000 à 2 000 000 | 0,5 à 2 |
| Isolation endommagée (la réparer) | Moins de 500 000 | Moins de 0,5 |

La valeur de résistance d’isolation varie très peu d’un moteur à l’autre, peu importent la puissance, la tension d’alimentation et le nombre de phases du moteur.

Les valeurs de résistance d’isolation ci-dessus sont tirées de mesures prises avec un mégohmmètre et une tension de sortie de 500 V c.c. Les valeurs mesurées peuvent varier si l’on utilise un ohmmètre avec une tension moindre. Communiquer avec le personnel technique de l’usine en pareil cas.
DIAGNOSTIC DES ANOMALIES

AVERTISSEMENT

OMETTRE DE VERROUILLER LA SOURCE DE COURANT EN POSITION OUVERTE AVANT D’EFFETUER TOUT TRAVAIL D’ENTRETIEN SUR LA POMPE PEUT CAUSER UN CHOC ÉLECTRIQUE, DES BRÛLURES OU LA MORT.

ANOMALIES	**CAUSES PROBALES**	**CORRECTIFS RECOMMANDÉS**
NON-FONCTIONNEMENT DU MOTEUR
NOTA : si le disjoncteur ne cesse de s’**OUVRIR**, **NE PLUS** le réarmer. S’adresser à un électricien.
da) Mode manuel
- Protecteur thermique du moteur déclenché
- Disjoncteur ouvert ou fusible sauté
- Roue bloquée ou grippée
- Câble d’alimentation endommagé
- Mauvaise connexion dans le tableau de commande

b) Mode automatique
- Fil neutre non connecté au tableau de commande
- Mauvaise connexion dans le tableau de commande
- Contacteur à flotteur défectueux
NOTA : vérifier si la pompe peut fonctionner en mode manuel d’abord. Si oui, la commande automatique ou le câblage sont défectueux. Dans la négative, voir les indications ci-dessus.

NON-ARRÊT DE LA POMPE
- Câbles de contacteur à flotteur enchevêtrés
- Poche d’air dans la pompe
- Débit de l’influent égal à celui de la pompe

DÉBIT DE REFOULEMENT
FAIBLE OU NUL
- Clapet de non-retour posé à l’envers, obstrué ou coincé en position fermée
- Hauteur de charge trop élevée du système
- Entrée de pompe obstruée
- Connexions ou tension inappropriées
- Poche d’air dans la pompe
- Roue usée ou endommagée
- Contacteurs à flotteur défectueux ou mal placés

CYCLE DE FONCTIONNEMENT RÉPÉTÉ SANS ARRÊT
- Clapet de non-retour défectueux
- Installation de confinement des eaux d’égout trop petite
- Contacteurs à flotteur défectueux ou mal placés
- Débit de l’influent supérieur à celui de la pompe

CORRECTIFS RECOMMANDÉS
- Laisser le moteur refroidir. Vérifier si la hauteur d’immersion est suffisante. Enlever les débris du corps de pompe et de la roue.
- En déterminer la cause et s’adresser à un électricien.
- Mesurer le courant (A) consommé par le moteur. Si l’intensité est au moins deux fois plus élevée que celle qui figure sur la plaque signalétique de la pompe, la roue est grippée, ou bien les roulements ou l’arbre du moteur sont endommagés. Enlever les débris du corps de pompe et de la roue. Consulter le détaillant.
- La valeur de résistance mesurée entre les fils d’alimentation et le fil de terre devrait être infinie. Si elle n’est pas appropriée, appeler un électricien.
- Inspector le câblage du tableau de commande.
- Appeler un électricien.
- Débrancher le contacteur à flotteur et en vérifier la continuité en l’actionnant. Le remplacer au besoin.
- Laisser le liquide monter de 76 à 101 mm (3 à 4 po) au-dessus du niveau de démarrage.
- Démêler les câbles de contacteur à flotteur et s’assurer que les contacteurs peuvent bouger librement.
- Arrêter la pompe pendant environ une minute, puis la remettre en marche. Répéter l’opération jusqu’à ce que la poche d’air s’élimine. Si le problème persiste et que le tuyau de refoulement comporte un clapet de non-retour, on peut percer un trou-purgeur d’air de 4,8 mm (3/16 po) de diamètre dans le tuyau à environ 51 mm (2 po) en aval de l’orifice de refoulement de la pompe.
- Il faut peut-être une pompe plus puissante.
- Vérifier l’orientation de la flèche sur le clapet de non-retour et le fonctionnement de ce dernier.
- Consulter le détaillant.
- Inspecter et dégager l’entrée au besoin.
- Vérifier le sens de rotation de la pompe, la tension et le câblage. Consulter un électricien.
- Voir le correctif recommandé pertinent ci-dessus.
- Inspector la roue et la remplacer au besoin.
- Inspector, régler ou remplacer les contacteurs au besoin.
- Inspecter, réparer ou remplacer le clapet au besoin.
- Consulter le détaillant.
- Inspecter, régler ou remplacer les contacteurs au besoin.
- Consulter le détaillant.
Installations types à pompe(s) d’assèchement, à effluents et à eaux d’égout
GARANTIE LIMITÉE DE GOULDS WATER TECHNOLOGY

La présente garantie s’applique à chaque pompe de système d’alimentation en eau fabriquée par Goulds Water Technology.

Toute pièce se révélant défectueuse durant la période de garantie sera remplacée sans frais pour le détaillant durant ladite période, qui dure douze (12) mois à compter de la date d’installation ou dix-huit (18) mois à partir de la date de fabrication, soit la période qui expirera la première.

Le détaillant qui, aux termes de cette garantie, désire effectuer une demande de règlement doit s’adresser au distributeur Goulds Water Technology agréé chez lequel la pompe a été achetée et fournir tous les détails à l’appui de sa demande. Le distributeur est autorisé à régler toute demande par le biais du service à la clientèle de Goulds Water Technology.

La garantie ne couvre pas :

a) les frais de main-d’œuvre ou de transport ni les frais connexes encourus par le détaillant ;
b) les frais de réinstallation de l’équipement réparé ;
c) les frais de réinstallation de l’équipement de remplacement ;
d) les dommages indirects de quelque nature que ce soit ;
e) ni les pertes découlant de la panne.

Aux fins de la présente garantie, les termes ci-dessous sont définis comme suit :

1) "Distributeur" signifie une personne, une société de personnes, une société de capitaux, une association ou autre entité juridique servant d’intermédiaire entre Goulds Water Technology et le détaillant pour les achats, les consignations ou les contrats de vente des pompes en question.

2) "Détaillant" veut dire une personne, une société de personnes, une société de capitaux, une association ou autre entité juridique dont les activités commerciales sont la vente ou la location de pompes à des clients.

3) "Client" signifie une entité qui achète ou loue les pompes en question chez un détaillant. Un "client" peut être une personne, une société de personnes, une société de capitaux, une société à responsabilité limitée, une association ou autre entité juridique se livrant à quelque activité que ce soit.

CETTE GARANTIE SE RAPPORTE AU DÉTAILLANT SEULEMENT.